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Abstract: The aim of the work presented in this paper is to investigate experimen-
tally the behavior of di�erent types of anisotropic di�usion schemes. The eÆciency
of the �lters based on the anisotropic di�usion is determined to large extent by the
properties of the conductance function in the PDE equation, which describes the
di�usion process. Changing the shape of the conductivity function, we can tune the
anisotropic di�usion �lter to the image noise intensity and its statistical properties,
in order to achieve optimal results of the image smoothing. This paper analyzes
the behavior of the classical functions introduced by Perona and Malik together
with the Tukey's biweight and Huber's minmax function introduced by Black et
al. and compares the di�erent �ltering schemes with the standard approaches used
for the reduction of Gaussian noise in digital images. c
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1. INTRODUCTION

Filtering is the �rst and one of the most important
image processing steps in most of the image anal-
ysis and computer vision applications. Its goal is
the removal of unpro�table information that may
corrupt any following processing.

The acquisition or transmission of digital images
through sensors or communication channels is of-
ten inferred by mixed impulsive and Gaussian
noise. In many applications it is indispensable to
remove the corrupted pixels to facilitate subse-
quent image processing operations such as edge
detection, image segmentation and pattern recog-
nition.

Di�erent �ltering schemes based on nonlinear dif-
fusion, developed for image enhancement have
been achieving more and more importance in the

last decade. One of the main goals of these al-
gorithms is to restore the image corrupted with
noise, while preserving the edges, corners and
other important image features.

2. ANISOTROPIC DIFFUSION

Let I (x; y) 2 [0; 1] represents an image with real-
valued intensities at positions (x; y) in the image
domain 
. The original image will be modifyied
using a partial derivative equation (PDE) and let
It (x; y) be the image at time (iteration) t.

The main concept of Anisotropic Di�usion is
based on the modi�cation of the isotropic di�usion
equation [1], to inhibit the smoothing of image
edges. This modi�cation is done by introducing
a function c(x; y; t) that encourages intra-region
smoothing over inter-region smoothing. Perona
and Malik [2] proposed a nonlinear anisotropic dif-



fusion equation, where the conduction coeÆcient
c (x; y; t) is dependent on the image structure [2 -
7] :

@I (x; y; t)

@t
=r � [c (x; y; t) rI (x; y; t)] ;

c (x; y; t) = f (krI (x; y; t)k) ; (1)

where krI (x; y; t) k is the gradient magnitude,
and c (krI (x; y; t) k) is the nonlinear conduction
function, that determines the behavior of the
di�usion process.

2.1 Discrete Anisotropic Di�usion

Anisotropic di�usion equation may be imple-
mented in discrete terms as:

I(t+1)
r = I(t)r +

�

jNrj

X
p2Nr

c
�
krI(t)r;pk

�
rI(t)r;p ;(2)

where Itr is a discretely sampled image at the
spatial position r. The constant � 2 R+ is a scalar
parameter that determines the rate of the di�u-
sion process, Nr denotes the spatial neighborhood
of the pixel located at the position r and jNrj is
the number of neighbors of the center pixel.

The gradients can be linearly approximated in a
chosen direction p as:

rI(t)r;p = I(t)r � I(t)p ; p 2 Nr : (3)

3. CONDUCTION FUNCTIONS

The function that impedes the smoothing across
the edges in the anisotropic di�usion scheme, is
the di�usion coeÆcient. The conduction function
c (krI (x; y; t) k), denoted as c(s) is space varying
(depending on the gradient magnitude s at a de-
termined position) and is chosen to be large in ho-
mogeneous regions to encourage image smoothing
and small at edges to preserve image structures.
This function should satisfy four properties:

(1) c (0) =M where 0 < M <1 ,
(2) c (s) = 0 , when s!1 ,
(3) c (s) � 0
(4) s � c (s) is a strictly decreasing function.

Property (1) ensures isotropic smoothing in re-
gions of similar intensity, while the property (2)
ensures the edge preservation. The last property
is given in order to avoid numerical instability.
The stability of the nonlinear PDE equation was
the particular concern of extensive research [4 -
6]. While most of the coeÆcients discussed here
obey the �rst three properties, not all formula-
tions obey the last one.

If the nonnegativity condition is not satisfyied a
backward di�usion proces will be performed [2,7].
The conduction functions used in the simulations

described in this paper accomplish the �rst three
properties, the last one is not satis�ed, which can
lead to the backward di�usion and ill-posedness
of the PDE.

Perona and Malik originally suggested two ill-
posed choices of c (s), (Fig. 1):

c1 (s) =
1

1 +
�
s

K

�2 ; c2 (s) = exp

�
�
� s

K

�2�
(4)

The constant K can be made adaptive, using
the "noise estimator" described in [8], where a
histogram of the absolute values of the gradients
throughout the image is computed and K is equal
to the 90% value of its integral.

Di�erent functions that satisfy the �rst three
properties can be chosen. In [9], robust statis-
tic norms were chosen to de�ne the conduction
functions. The authors proposed there the Tukey's
biweight function, (Fig. 1) :

c3 (s) =

8<
:

1

2

�
1�

� s
S

�2�2
; s � S;

0 , otherwise.

(5)

Another function extracted from the robust statis-
tics literature is the Huber's minimax norm [10]:

c4 (s) =

�
1=S ; jsj � S;

sign (s) =s ; jsj > S:
(6)

According to the authors of [10], these conduc-
tivity functions should lead to a more robust
anisotropic di�usion �lters, which better cope
with the smoothing of noisy images. The aim of
this work is to evaluate the performance of those
two functions as compared with the functions in-
troduced by Perona and Malik [2].

4. RESULTS OF THE COMPARISON

In order to compare the eÆciency of the anisotropic
di�usion �ltering schemes based on di�erent con-
ductivity functions, we contaminated the LENA
and PEPPERS standard gray scale images with
zero-mean, additive Gaussian noise of � = 10; 20
and 30 respectively. For each conductivity func-
tion we searched for the optimal combination of
� and the K or S constant parameters. For each
combination of � and the second parameter, we
iterated the di�usion process untill the maximum
PSNR value was achieved. From all the combi-
nations of �lters' parameters we found the best
possible value for each conductivity function and
treated this value as an indicator of the �lter's
performance.

The eÆciency of the four �ltering schemes is
shown in Figs. 2 and 4. Figures 6, 7 show the
evolution of PSNR with the iteration number for
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Fig. 1. Plots of the conductivity functions: (a) Gaussian - c1; (b) 1=(1+(s=K)2) - c2; (c) Tukey's biweight
- c3; (d) Huber's minmax - c4.

the optimal parameter settings. We observe, that
for all four evaluated conductivity functions, only
one local maximum can be found and further
iterations decrease slowly the image quality intro-
ducing too much smoothing.

Figures 3 and 5 show the results of noise attenu-
ation obtained using some of the standard �lters.
For the comparison we used the � trimmed �lters,
mean average and the median.

5. CONCLUSIONS

Our simulations revealed that for the the images
distorted by Gaussian noise of � = 10; 20 and
30, the c1 function yielded slightly better results
than the Gaussian c2. Surprisingly, the robust
conductivity functions c3 and c4 were not at all
signi�cantly superior to the functions c1 and c2
originally proposed by Perona and Malik (the c�
3 yielded slightly better results than c2. There
were no signi�cant di�erences in the PSNR values
obtained using the robust functions c3 and c4. The
�ltering scheme based on the Huber minmax gave
the poorest results.

The eÆciency of the anisotropic di�usion de-
creases with the intensity of the Gaussian noise
and for � = 30 this �ltering scheme is signi�cantly
worse than the simple �-trimmed mean, which by
the way performed better than the 3� 3 median.
This inability of the anisotropic di�usion �lters
to suppress strong Gaussian noise can be derived
from the fact that strong impulses introduced by
the noise process are perceived by the �lters as
edges and are not eliminated, which leads to a
poor �lter performance. We expected that the
conductivity functions based on the robust statis-
tics would perform signi�cantly better for strongly
degraded images, than the simple functions c1 and
c2. Our extensive simulations revealed however,
that the robust conductivity functions do not im-
prove the �lter performance. In fact their perfor-
mance was even slightly worse than when using
the functions proposed by Perona and Malik.

The performed study shows, that for the Gaussian
additive noise of low intensity, the anisotropic

di�usion based on the c1 conduction coeÆcient
is a very good choice. The robust statistics de-
scribed in [9] failed to increase the eÆciency of
the anisotropic di�usion based noise �ltering.
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Fig. 2. The eÆciency of the anisotropic di�usion
�lters in terms of PSNR. For the evaluation
purposes 15 iterations were computed for the
gray scale LENA image distorted by zero-
mean additive Gaussian noise using di�erent
conductivity functions (c1, c2, c3 and c4) de-
scribed in this paper and � values ranging
from 1=8 to 1=100. For each conductivity
function the optimal settings of the param-
eters were found and the best possible PSNR
results were selected as indicators of the spe-
ci�c �lter performance.

Fig. 3. PSNR results obtained with other com-
monly used �lters using the same distorted
LENA images: (1) �-trimmed (2 excluded
pixels), (2) �-trimmed (4 excluded pixels),
(3) moving average (3x3), (4) moving average
(5x5) (5) median �lter (3x3, 2 iterations),
(6) median �lter (5x5, 2 iterations) (7) me-
dian �lter (3x3), (8) Median �lter (5x5), (9)
Anisotropic di�usion with c1.



Fig. 4. The eÆciency of the anisotropic di�usion
�lters in terms of PSNR. For the evalua-
tion purposes 15 iterations were computed
for the gray scale PEPPERS image distorted
by zero-mean additive Gaussian noise using
di�erent conductivity functions (c1, c2, c3
and c4) described in this paper and � values
ranging from 1=8 to 1=100. For each con-
ductivity function the optimal settings of the
parameters were found and the best possible
PSNR results were selected as indicators of
the speci�c �lter performance.

Fig. 5. PSNR results obtained with other com-
monly used �lters using the same distorted
PEPPERS images: (1) �-trimmed (2 ex-
cluded pixels), (2) �-trimmed (4 excluded
pixels), (3) moving average (3x3), (4) moving
average (5x5) (5) median �lter (3x3, 2 itera-
tions), (6) median �lter (5x5, 2 iterations) (7)
median �lter (3x3), (8) Median �lter (5x5),
(9) Anisotropic di�usion with c1.



Fig. 6. The dependence of the PSNR on the
iteration number using di�erent conductivity
functions, (LENA).

Fig. 7. The dependence of the PSNR on the
iteration number using di�erent conductivity
functions, PEPPERS).


