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EVALUATION OF THE EFFICIENCY OF ROBUST
ANISOTROPIC DIFFUSION SCHEMES

Abstract

The aim of the work presented in this paper is to investigate experimentally the
behavior of different types of anisotropic diffusion schemes. The efficiency of the
filters based on the anisotropic diffusion is determined to large extent by the prop-
erties of theconductance functionin the PDE equation, which describes the dif-
fusion process. Changing the shape of the conductivity function, we can tune the
anisotropic diffusion filter to the image noise intensity and its statistical properties,
in order to achieve optimal results of the image smoothing. This paper analyzes the
behavior of the classical functions introduced by Perona and Malik together with
the Tukey’s biweight and Huber’s minmax function introduced by Black et al. and
compares the different filtering schemes with the standard approaches used for the
reduction of Gaussian noise in digital images.
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1 INTRODUCTION

Filtering is one of the most important image processing steps in many image analysis and
computer vision applications. Its goal is the removal of unprofitable information that may cor-
rupt any following processing.

The acquisition or transmission of digital images through sensors or communication chan-
nels is often inferred by mixed impulsive and Gaussian noise. In many applications it is indis-
pensable to remove the corrupted pixels to facilitate subsequent image processing operations
such as edge detection, image segmentation and pattern recognition.

Different filtering schemes based on nonlinear diffusion, developed for image enhancement
have been achieving more and more importance in the last decade. One of the main goals
of these algorithms is to restore the image corrupted with noise, while preserving the edges,
corners and other important image features.

This paper analyzes the behavior of the classical functions introduced by Perona and Malik
together with the Tukey’s biweight and Huber’s minmax function introduced by Black et al. and
compares the different filtering schemes with the standard approaches used for the reduction of
Gaussian noise in digital images.
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a) b) c) d)

Fig. 1. Plots of the conductivity functions: (a) Gaussian -c1; (b) 1/(1 + (s/K)2) - c2; (c)
Tukey’s biweight -c3; (d) Huber’s minmax -c4.

2 ANISOTROPIC DIFFUSION

Let I (x, y) ∈ [0, 1] represents an image with real-valued intensities at positions(x, y) in
the image domainΩ. The original image will be modifyied using a partial derivative equation
(PDE) and letI t (x, y) be the image at time (iteration)t.

The main concept ofAnisotropic Diffusionis based on the modification of the isotropic
diffusion equation [1], to inhibit the smoothing of image edges. This modification is done
by introducing a functionc(x, y, t) that encourages intra-region smoothing over inter-region
smoothing. Perona and Malik [2] proposed a nonlinear anisotropic diffusion equation, where
the conduction coefficientc (x, y, t) is dependent on the image structure [2 - 7] :

∂I (x, y, t)

∂t
= ∇ [c (x, y, t) ∇I (x, y, t)] , c (x, y, t) = f (‖∇I (x, y, t)‖) , (1)

where‖∇I (x, y, t) ‖ is the gradient magnitude, andc (‖∇I (x, y, t) ‖) is the nonlinearconduc-
tion function, that determines the behavior of the diffusion process.

Anisotropic diffusion equation may be implemented in discrete terms as:
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whereI t
r is a discretely sampled image at the spatial positionr. The constantλ is a scalar

parameter that determines the rate of the diffusion process,Nr denotes the neighborhood of
the pixel located at the positionr and|Nr| is the number of neighbors of the center pixel. The
gradients can be approximated in a chosen directionp as:∇I

(t)
r,p = I

(t)
r − I

(t)
p , p ∈ Nr.

3 CONDUCTIVITY FUNCTIONS

The function that impedes the smoothing across the edges in the anisotropic diffusion
scheme, is the diffusion coefficient. The conduction functionc (‖∇I (x, y, t) ‖), denoted as
c(s) is space varying (depending on the gradient magnitudes at a determined position) and is
chosen to be large in homogeneous regions to encourage image smoothing and small at edges
to preserve image structures.

Perona and Malik originally suggested two choices ofc (s), (Fig. 1a, b):
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(3)
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The constantK can be made adaptive, using the ”noise estimator” described in [8], where a
histogram of the absolute values of the gradients throughout the image is computed andK is
equal to the90% value of its integral.

Different types of functions have been proposed over the years in the literature. In [9],
robust statistic norms were chosen to define the conduction functions. The authors proposed
there theTukey’s biweight function, (Fig. 1c). Another function extracted from the robust
statistics literature is theHuber’s minimax normc4(s) [10], (Fig. 1c).

c3 (s) =

{
1
2

[
1−

(
s
S

)2
]2

, s ≤ S,

0 , otherwise.
, c4 (s) =

{
1/S , |s| ≤ S,
1/s , |s| > S.

(4)

According to the authors of [10], these conductivity functions should lead to a more robust
anisotropic diffusion filters, which better cope with the smoothing of noisy images. The aim of
this work is to evaluate the performance of those two functions as compared with the functions
introduced by Perona and Malik [2] and standard noise reduction techniques.

4 RESULTS OF THE COMPARISON

In order to compare the efficiency of the anisotropic diffusion filtering schemes based on
different conductivity functions, we contaminated the LENA standard gray scale image with
zero-mean, additive Gaussian noise ofσ = 10, 20 and30 respectively. For each conductivity
function we searched for the optimal combination ofλ and theK or S constant parameters.
For each combination ofλ and the second parameter, we iterated the diffusion process until the
maximum PSNR value was achieved. From all the combinations of filters’ parameters we found
the best possible value for each conductivity function and treated this value as an indicator of
the filter’s performance.

Figure 2 shows filter’s efficiency in dependence on theλ andK values when c2 conduc-
tivity is used. It is easy to notice that optimal values of the PSNR are obtained forλ ≈ 0.1 for
wide range ofK parameter, thusλ = 0.1 is used for further simulations.

The efficiency of the four filtering schemes is shown in Figs. 3 and 4. Figure 4 shows the
results of noise attenuation obtained using some of the standard filters. For the comparison we
used theα trimmed filters, mean average and the median.

a) b) c)

Fig. 2. The efficiency of the anisotropic diffusion usingc2 conductivity function in de-
pendence onλ andK values forLENA test image contaminated with Gaussian noise of:
a) σ = 10, b) σ = 20, c) σ = 30.
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5 CONCLUSIONS

Our simulations revealed that for the the images distorted by Gaussian noise ofσ = 10, 20
and30, thec1 function yielded slightly better results thanc2. Surprisingly, the robust conductiv-
ity functionsc3 andc4 were not at all significantly superior to the functionsc1 andc2 originally
proposed by Perona and Malik, (thec3 yielded slightly better results thanc2).

There were no significant differences in the PSNR values obtained using the robust func-
tionsc3 andc4. The filtering scheme based on the Huber minmax gave the poorest results.

The efficiency of the anisotropic diffusion decreases with the intensity of the Gaussian
noise and forσ = 30 this filtering scheme is significantly worse than the simpleα-trimmed
mean, which by the way performed better than the3×3 median. This inability of the anisotropic
diffusion filters to suppress strong Gaussian noise can be derived from the fact that strong im-
pulses introduced by the noise process are perceived by the filters as edges and are not elim-
inated, which leads to a poor filter performance. We expected that the conductivity functions
based on the robust statistics would perform significantly better for strongly degraded images,
than the simple functionsc1 andc2. Our extensive simulations revealed however, that the robust
conductivity functions do not improve the filter performance. In fact their performance was
even slightly worse than when using the functions proposed by Perona and Malik.

The performed study shows, that for the Gaussian additive noise of low intensity, the
anisotropic diffusion based on thec1 conduction coefficient is a very good choice. Thero-
bust statisticsdescribed in [9] failed to increase the efficiency of the anisotropic diffusion based
noise filtering.
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Fig. 3. The efficiency of the anisotropic
diffusion filters in terms of PSNR. For
the evaluation purposes the gray scale
LENA image distorted by zero-mean ad-
ditive Gaussian noise of (σ = 10, 20, 30)
using different conductivity functions (c1,
c2, c3 andc4) described in this paper and
λ = 0.1 was used.

Fig. 4. PSNR results obtained with other
commonly used filters using the same dis-
torted LENA images: (1)α-trimmed (2
excluded pixels), (2)α-trimmed (4 ex-
cluded pixels), (3) moving average (3x3),
(4) moving average (5x5), (5) median fil-
ter (3x3, 2 iterations), (6) median filter
(5x5, 2 iterations) (7) median filter (3x3),
(8) median filter (5x5), (9) anisotropic
diffusion with c1.
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