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Süıssa

En el desenvolupament de l’actual món tecnològic que ens envolta, el paper de les imat-
ges digitals és vital. La optimització del processos relacionats amb aquest àmbit en termes
de captura, emmagatzemament i transmissió representa un dels reptes més desafiants del
processament d’imatge. Tota màquina capaç de rebre i enviar dades està incorporant la
possibilitat de treballar també amb imatges i aquesta tendència sembla que hagi de ser
més important en el futur. El fet de voler transmetre i rebre imatges amb qualsevol tipus
d’aparell i en molts entorns diferents fa que s’hagi d’adaptar la representació d’aquest tipus
de dades a les possibilitats del canal i del receptor: per a un canal de banda estreta cal
que aquesta representació sigui més compacta.

El principal problema de l’emmagatzemament d’una imatge és l’elevat nombre de dades
necessaries per representar-les. Per tal de reduir aquesta quantitat de dades s’han desen-
volupat moltes tècniques diferents: representacions polinòmiques, Wavelets, DCT,... Tot i
aix́ı el decreixement de l’error que la codificació amb un nombre finit de coeficients dóna,
quan parlem d’imatges (senyals en dues dimensions) no és mai tan bona com quan parlem
de senyals en una sola dimensió. Donat que en condicions adverses el nombre de bits que
podem emprar per representar el senyal ve limitat per les caracteŕıstiques del canal o del
receptor, el fet de tenir el decreixement de l’error major possible és vital per a millor la
qualitat de la representació. Per aquest motiu, noves tècniques de codificació han estat
estudiades. Aquestes tècniques han estat dissenyades no per treballar amb alts bit rates,
on standards com el JPEG2000 són suficientment bons, però si per baixos bit rates on sem-
pre hi ha una pèrdua de qualitat. Aquesta pèrdua de qualitat que les tècniques standard
introdueixen quan representant imatges amb poques dades fan que el resultat tingui una
mala qualitat visual.

L’algoritme Matching Pursuit a donat bons resultats quan s’intenta codificar una imatge
amb pocs coeficients. Les seves propietats i la possibilitat d’obtenir representacions com-
pactes el fan un bon candidat per un futur sistema de codificació d’imatges. Però el
principal problema d’aquest algoritme (aplicat en la seva versió original per codificar imat-
ges) és que la descomposició obtinguda s’obté tractant la imatge com un conjunt de ṕıxels
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sense cap sentit semàntic, és a dir no es té en compte el contingut de la imatge. Llavors,
tenir en compte la forma en com els éssers human percevem les informació visual durant el
procés de codificació pot proporcionar millors representacions en termes de qualitat visual.
Dos nous mètodes són presesentats en aquest projecte que acompleixen el nostre objectiu.
El primer és basa en l’ús d’una sèrie de màsqueres de probabilitat que donen més pes a
les zones on hi ha concentrada més informació visual. Aquestes màsqueres seran dues (en
el nostre model). La primera ressaltarà les àrees amb els contorns més importants (on
hi sol haver més informació) i la seva definició es basa en una mesura de contrast sobre
la imatge. De fet, la percepció humana està basada en mesures de contrast i, per tant,
aquesta màscara acompleix la nostra perspectiva de ser fidels al sistema visual humà. La
segona màscara detectarà i ressaltarà les textures presents a la imatge, basant-se en el
mètode de E.Simmoncelli, que també es basa en la percepció humana de les textures. L’ús
d’aquestes màsqueres en el procés de codificació no afecta el decreixement exponencial dels
coeficients (propietat ja inherent al Matching Pursuit) cosa que permet una quantització
eficient que resulta en un bit rate redüıt.

El segon mètode proposat en aquest projecte es basa en una reordenació (”scrambling”)
de la descomposició donada per l’algoritme standard Matching Pursuit per tal d’aconseguir
una representació on els termes que continguin més informació visual es representin en
primer lloc. El criteri per dur a terme aquesta reordenació es basa a la seva vegada en
les màsqueres de probabilitat anteriorment citades. Les aventatges d’aquests dos mètodes
fins aqúı citats són que les descomposicions obtingudes, tot i tenir un PSNR inferior a la
descomposició generada per l’algoritme standard Matching Pursuit, la seva qualitat visual
és millor. Això és una caracteŕıstica desitjable quan tractem amb bit rates molt baixos:
mesurar la qualitat d’una imatge per com es veu en comptes del seu PSNR (que no es una
bona referència visual d’una imatge).

Finalment, una nova versió de l’algoritme original Matching Pursuit: dur a terme la
descomposició per sub-zones. En altres paraules, definir una partició de l’imatge original en
zones amb una caracteŕıstica homogènia, textures o contorns, i aplicar una descomposició
local, dissenyant diccionaris adaptats a les caracteŕıstiques d’aquella partició. El resultat
d’aplicar aquest procés comporta una reducció del 60% -80% del temps per a dur a terme
la codificació.
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la sort de conèixer-ne molts. Primer gràcies als meus companys de laboratori: Marc,
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También un recuerdo para mi amiga Virginia i todos mis companyeros de viaje alrededor
del mundo.

Al meu gos Beto que, desde el cel del gossos, deu estar bordant-me d’alegria perqué
torno a casa.

4



5
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Abstract

The objective of image coding is to reduce the number of bits needed to represent an
image, while making as few as possible perceptual distortion to the image. Images coded
at low bit-rates, say below 0.5bpp, bear the loss of details and sharpness, as well as various
artifacts which are perceptually objectionable. On the other hand, with the need for
transmission and storage of more and larger images, the demand for higher compression
is also increasing. When the transmission is restricted by a narrow bandwidth channel
or the storage is constrained to spend as few bytes as possible, we must adapt the image
representation to fit such scenarios. The existent techniques, when allowing a low number
of bits, introduce distortions to the image that are very unpleasant to the observer, and so
a simplification of the sent image or a coding method that automatically does it is needed
in order to have an acceptable image representation.

In previous works [31], Matching Pursuit was presented as a powerful technique to code
images for very low bit-rate channels. In this thesis, three dictionaries have been built
based on the following atoms: Anisotropic Refinement (suitable to code edges), Gabor (to
code textures) and Gauss (to code the image baseband). Furthermore, three new coding
schemes have been proposed with the aim to embed the issue of visual quality into the
coding process. Hybrid Matching Pursuit, that performs the decomposition taking
into account the most meaningful areas of the image, Scrambled Matching Pursuit
that computes a ”visually scaled” output stream based on the decomposition given by
the standard Matching Pursuit and Split Matching Pursuit that splits the original
image into sub-images and performs Matching Pursuit into each sub-image; this method
speeds-up the standard algorithm around 60-80%.

These coders, when working with a low amount of coefficients, have good performance
and give better results than other conventional techniques such as DCT or wavelets. The
main advantages regarded by these schemes are its adequacy to code properly the most
meaningful areas of an image, its robustness to quantization, scalability and simplicity of
the decoder.

13



Chapter 1

Introduction

1.1 Where are we?

Optimizing the performance of digital imaging systems with respect to the capture, display,
storage and transmission of visual information represents one of the biggest challenges in
the field of image and video processing.

One of the main problems of images is the big amount of data we need to have them
fully represented. A large number of techniques to reduce this amount of data have been
implemented in order to be able to transmit digital images with low bit rates. These
techniques go from very simple ones (like polynomial representations) to more elaborated
ones (fractal coding, DCT,...). Yet the coding error decay (the decay of the module of the
error due to the representation when adding a coefficient) in image (2D signals) is never
as good as in 1D signals. And when the number of bits ”allowed” to represent a signal
is limited for the characteristics of the channel or the receiver, the fact of maximizing the
error decay is vital.

That is the reason why new coding techniques have been introduced. Not for large bit
rates, where standards like JPEG2000 are good enough, but for smaller bit rates, where
there is always a loss of quality. The loss of quality that the actual coding techniques
introduce when coding images at extremely low bit rates leads to not visually pleasant
representations.

Matching Pursuit algorithm has showed good results when coding images with few
coefficients. Its properties and the possibility to get sparse representation of images (that
is with very few coefficients) make it a good direction where to work on. But the standard
flavor of Matching Pursuit is completely based on the image as a meaningless set of pixels
without taking in account any relevant aspect of it, in terms of what represents in the
image itself. Taking into account the way humans perceive visual information can be
greatly beneficial for this task. If this visual information can be taken into account when
effectuating the coding process, the resulting representation would be more pleasant to the
observer.

In this dissertation, three novel schemes based on the former Matching Pursuit tech-

14
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nique are presented in order to improve the coding results in relation with the perception
of the reconstructed image. Furthermore, improvements over the existing Matching Pur-
suit results have been done by adding new dictionaries to code determinate features (like
textures) of the image. Maybe this new technique is the gate to the future of image coding.

1.2 Visual quality

Matching Pursuit works out by choosing iteratively the coefficients with largest energy. In
some cases, this leads to achieve sparse representations of the input signal, very suitable for
compression. It does not pay attention to the areas that contain more visual information in
the image, so that is the strongest contours and patterns. Hence, we would try to develop
a variant of this algorithm in order to enhance the most meaningful areas of the image and
create a perceptually ”nice” representation. A way to do this is to use a set of probability
masks that detect this relevant areas and embed this information into the coding process
in such a way more atoms are placed in these interest areas.

These probability masks will be two. The first one will be based on contrast measures
(i.e. the perception of stimuli in relation to their surround) to detect where are the strongest
edges of the image; in fact, human perception is based on the measures of contrast, hence,
this mask fits our aim to remain close to the human visual system. The other mask will
detect the textures present in the image by a method [84] also based on the responses of
the early visual cortex cells [72]. Hence, it seems to be a good starting point to develop
coding techniques related with the perception of the images by the humans.

1.3 Organization

The order given to this dissertation pretends to make it easy to understand Matching
Pursuit, the new schemes based on it and the reasons that have brought to the study of
these techniques as well. The work is organized as follows:

Chapter 2 includes the Signal Processing basics. First of all we have a short introduction
to the Fourier Transform and the Discrete Fourier Transform. Afterwards, there is
a short review on edge detectors (basically, linear kernels) and an introduction to
texture detectors. Finally, a short contraposition between pixel-based metrics and
subjective metrics is written. Furthermore, here we show the inviability of pixel-
based metrics such PSNR or MSE to evaluate the quality of an image giving the
example of masking effect.

Chapter 3 makes an introduction to Adaptive Greedy Approximations of signals. This
approximation problem belongs to the set of NP-hard problems, hence the optimal
approximation is not computationally affordable. Instead, sub-optimal approxima-
tions have been purposed, among them Matching Pursuit. A fully presentation of
this algorithm is done and an optimization based on a Full Search in the frequency
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domain as well. Finally, Weak Matching Pursuit is introduced and the computer
implementation we did to perform our decompositions (based on distributed pro-
gramming).

Chapter 4 gives a general description of the three dictionaries used by our Hybrid Match-
ing Pursuit coders. A thorough mathematical study over its properties and design is
done.

Chapter 5 shows the architectures and properties of the three new Hybrid Matching
Pursuit coding schemes. With this descriptions there are the main results obtained:
their performances, the quality achieved, the quantization and the codification.

Chapter 6 announces the main conclusions we can get from this work, as well as some
future work.



Part I

Theory and Background
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Chapter 2

Signal Processing Background

2.1 Introduction

This chapter pretends to be a brief introduction to the concepts and theory necessary to
have a full understanding of the work presented in this thesis. It does not pretend to be
a full extensive explanation of all this concepts but a short review of them. Actually, a
person familiar with Signal Processing could skip this chapter due to its simplicity.

In the last pages of this thesis you can find a wide bibliography that could help you
to understand thoroughly the concepts presented here. More specific and recommended
bibliography to a fully understand of this work would be:

• For an introduction to the basis of Image Processing, the following references are
recommended [9],[49].

• Mallat’s book [63] for a complete description on Fourier spaces, wavelets and a brief
theoretical approach to Matching Pursuit.

• Matching Pursuit is quite fairly explained in the paper by Mallat and Zhang [62].
Despite it is explained for mono-dimensional signals, the principle is extensible to
multidimensional signals.

• For a short review on edge and texture detection, the following references are most
interesting [65],[66].

2.2 Fourier Kingdom

The Fourier transform expresses a signal as the sum of a series of complex exponentials
(sines and cosines). Due to the fact that the sinusoidal waves are eigenvectors of linear
time-invariant/space-invariant operations, the Fourier transform is appropriate for linear
time-invariant/space-invariant signal processing. The properties of the Fourier Transform

18
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make it very useful for signal processing of continuous or discrete signals. Mainly, contin-
uous signals belong to the analogical signal processing field, hence the Continuous Fourier
Transform is defined for this type of signals. In image processing, the information is rep-
resented by a discrete set (an image) formed by M ×N values (pixels) which hold a value
(continuous or discrete if they are quantized). In this way, the Discrete Fourier Transform
is a suitable tool for representing and manipulating the image information. First, the
Fourier Transform will be introduced in the continuous time domain and then it will be
extrapolated to the Discrete Fourier Transform, in non-continuous (so, discrete) time.

2.2.1 Continuous Fourier Transform in 2D

The Continuous Fourier Transform for two dimensional signals is defined as a linear oper-
ator F : R × R → C × C as follows:

F (ωx, ωy) = F [f(x, y)](ωx, ωy) =

∫ ∞

−∞

∫ ∞

−∞

f(x, y) e−j(xωx+yωy)dx dy, (2.1)

where ej(xωx+yωy), when written in polar coordinates, gives the expression of a plain wave:

ej(xωx+yωy) = ejρ(x cos θ+y sin θ), (2.2)

with ρ =
√
ω2
x + ω2

y . This wave propagates in the direction of θ and oscillates at the
frequency ρ.

The Fourier Transform of f(x, y) is then the amplitude of each sinusoidal wave ej(xωx+yωy),
and it represents the influence of each frequency in the signal.

The Inverse Fourier Transform is given by the following integral:

f(x, y) = F−1[F (ωx, ωy)](x, y) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞

F (ωx, ωy) e
j(ωxx+ωyy)dωx dωy. (2.3)

As the FT gives a full representation of the signal, it is an invertible operation and
supposes no loss of information.

2.2.2 Propertied of the Continuous Fourier Transform in 2D

The Fourier Transform has certain properties that make it very useful and appropriate for
signal processing. Here there are presented the main properties without a fully demon-
stration of them (mainly, their demonstrations are directly found by applying the Fourier
Transform definition).

Linearity Due to the fact that the integration is a linear operator, the Fourier Transform
has also the properties of linear operators: commutation with addition and product
by a scalar. Hence:

F [λf(x, y) + µg(x, y)] = λF (ωx, ωy) + µG(ωx, ωy). (2.4)
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Transposition This property shows that the Fourier Transform of the transpose of f(x, y),
being the transpose f(−x,−y), is the transpose of the Fourier Transform:

F [f(−x,−y)] = F (−ωx,−ωy). (2.5)

Conjugation The conjugation property says that the Fourier Transform of the conjugate
of a signal is the conjugated and transposed Fourier Transform of this signal:

F [f ∗(x, y)] = F ∗(−ωx,−ωy), (2.6)

where ∗ represents the complex conjugate of the function.

Scaling Scaling the function is the same as multiplying the variables x and y by a constant
sx 6= 0 and sy 6= 0 respectively. We find that scaling in space is equivalent to the
inverse of the scaling in frequency (with a multiplying factor):

F [f(sxx, syy)] =
1

|sxsy|
F

(
ωx
sx
,
ωy
sy

)
. (2.7)

Translation This property asserts that a translation in space is equivalent to a modulation
in the frequency domain:

F [f(x− px, y − py)] = ej(ωxpx+ωypy)F (ωx, ωy). (2.8)

Modulation This is the inverse property of translation: the Fourier Transform of a mod-
ulated signal is a frequency translated signal.

F [ej(ωx0x+ωy0y)f(x, y)] = F (ωx − ωx0 , ωy − ωy0). (2.9)

Derivation This property says that partial derivation with respect to one spatial variable
in the space domain is equivalent to the non-derived transformed function multiplied
by its respective frequency variable in the frequency domain:

F
[
∂mf(x, y)

∂xm

]
= (jωx)

m F (x, y). (2.10)

If we derive with respect to y instead of x in the frequency domain we will multiply
by ωy instead of ωx.

Deriving in the frequency domain is equivalent to deriving in the spatial domain,
with a change of sign, so we can also deduce the dual property for derivation in the
frequency domain:

F [(−jx)mf(x, y)] = F (m)(ωx, ωy). (2.11)
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Rotation A rotation of θ in f(x, y) causes the same rotation in the transformed domain
F (ωx, ωy):

F [f(x, y)"θ] = F (ωx, ωy)"θ. (2.12)

Convolution To perform a linear convolution in the space domain is equivalent to a
product in the Fourier domain:

F [f(x, y) ∗ g(x, y)] = F (ωx, ωy) ·G(ωx, ωy). (2.13)

The property is very important and the reader should recall it because in future
chapters will be used thoroughly. Note the save of computational load between
performing a convolution in space domain and a product in the frequency domain.

Separability Due to integral properties, the Fourier Transform has the separability con-
dition. That is equivalent to say that the 2D Fourier Transform of a function is equal
to a product of 1D Fourier Transform along the x and y directions:

F2D[Image] = F1D[Rows] {F1D[Columns]} . (2.14)

This property is useful for simplifying the calculation of the Fourier Transform when
implementing it.

Information in images Most of the information contained in images comes from the
contours and edges1 [30]. In the Fourier domain, the contours are mainly represented
by the phase of the Fourier transform. This implies that most of the information of
the images is in the phase, not in the module, as can be seen in the example depicted
in Figure 2.1.

2.2.3 Discrete Fourier Transform

The 2D Discrete Fourier Transform for a M ×N pixels image is defined as follows

X[k, l] ,
1√
MN

M−1∑

m=0

N−1∑

n=0

x[m,n]e−j2π(
mk
M

+nl
N ) 0 ≤ k ≤M, 0 ≤ l ≤ N. (2.15)

And the inverse transform is:

x[m,n] ,
1√
MN

M−1∑

k=0

N−1∑

l=0

X[k, l]ej2π(
mk
M

+nl
N ) 0 ≤ m ≤M, 0 ≤ n ≤ N, (2.16)

where 1/
√
MN is a normalising factor to have a unitary transformation.

1Realize that we are talking in term of visual information instead of PSNR or other pixel based measures.
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Modulus

Phase

Modulus

Phase

Figure 2.1: Information in images. Demonstration that the greatest part of the information
is regarded by the phase of the Fourier Transform instead of the modulus.

The Discrete Fourier Transform in 2D is narrowly connected with the Fourier Transform
in the sense that the first can be calculated as a discretisation of the seconed. That is, in
other words, the DFT is a sampled version2 of the FT:

X[k, l] = X
(
ejωx , ejωy

)
|ωx= 2π

M
k,ωy= 2π

N
l, (2.17)

where the size of the image is M ×N .
The DFT has the same properties as FT, but it has also to them the periodicity and the

symmetry characteristics. A transformed DFT signal, according to the Nyquist theorem,
is periodised as follows:

X[k, l] = X[k + r1M, l + r2N ], (2.18)

with r1, r2 ∈ N. Moreover, the DFT has the following symmetry respost to the zero
frequency:

X[k, l] = X∗[M − k,N − l], (2.19)

where ∗ representes the complex conjugated.

2Usually sampled uniformly over the time. Non-uniform sampling is explained thoroughly in [2].
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2.2.4 Fast Fourier Transform (FFT)

When the work of Cooley and Tukey [16]3 appeared in 1965, signal processing field suffered
a revolution: Fast Fourier Transform was born. FFT is an optimization of the calculus of
the DFT in the sense that for vectors (or matrices) with a dimension 2n with n ∈ N, the
computational load was reduced from N2, in the DFT case for a square image of N pixels,
to N log2N , in the case of FFT. In Image Processing applications, FFT is commonly used
and it will be the basis of some optimizations in further chapters.

2.3 Edge detection filters

Edge detection is a fundamental part of this project. In future chapters, a crucial part
of our Hybrid Matching Pursuit coder will take use of an edge detection filter. Hence, a
short review of the standard edge detection filters is done here as well as few remarks of
comparison. This does not pretend to be an extensive explanation, just few words; for
more information review [49], [9].

2.3.1 First-Derivative methods

Most edge-detecting operators can be seen as gradient-calculators, so, that is, based on the
first-derivative. Recall the definition of the gradient operator ∇:

∇ =




∂
∂x

∂
∂y

.


 (2.20)

Many of these detectors are based in some way on measuring the intensity gradient
at a point in the image. Because the gradient is a continuous-function concept and we
have discrete functions (images), we have to approximate it. Since derivates are linear and
shift-invariant, gradient calculation is most often done using convolution. Numerous linear
kernels have been proposed for finding edges based on the calculus of the first derivative
and some of them are presented here.

Roberts Kernels Since an edge detector is looking for differences between pixels, one
way to find edges is to use an operator that calculates I(x̄i) − I(x̄j) for two pixels i
and j in a neighborhood. Matematically, these are called forward differences:

∂I

∂x
≈ I(x+ 1, y) − I(x, y). (2.21)

3In fact, Fast Fourier Transform was not new. Gauss had already published a work that was a primitive
form of the modern FFT [48].
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The Roberts kernels attempt to implement this using the following kernels:

g1 =

(
1 0
0 −1

)
g2 =

(
0 1
−1 0

)
, (2.22)

While these are not specifically derivatives with respect to x and y, they are deriva-
tives with respect to the two diagonal directions. These can be thought of as compo-
nents of the gradient in such a coordinate system. So, we can calculate the gradient
magnitude by calculating the length of the gradient vector:

g =

√
(g1 ∗ I)2 + (g2 ∗ I)2, (2.23)

where ∗ is the convolution operator. The main drawback of this edge detector is
that Roberts kernels are in practice too small to reliably find edges in the presence
of noise.

Prewitt Kernels The Prewitt kernels are based on the idea of the central difference:

∂I

∂x
≈ I(x+ 1, y) − I(x− 1, y)

2
. (2.24)

This corresponds to the following convolution kernel:

1

2

(
−1 0 1

)
. (2.25)

By rotating this kernel 90 degrees, we get ∂I/∂y.

These kernels are, however, sensitive to noise; a method to reduce some of the effects
of noise, we can perform averaging. This is done in the Prewitt kernels by averaging
in y when calculating ∂I/∂x and by averaging in x when calculating ∂I/∂x. These
produce the following kernels:

∂

∂x
=

1

6




−1 0 1
−1 0 1
−1 0 1


 ∂

∂y
=

1

6




1 1 1
0 0 0
−1 −1 −1


 , (2.26)

Together, these kernels give us the components of the gradient vector.

Sobel Kernels The Sobel kernels also rely on central differences, but give greater weight
to the central pixels when averaging

∂

∂x
=

1

8




−1 0 1
−2 0 2
−1 0 1


 ∂

∂y
=

1

8




1 2 1
0 0 0
−1 −2 −1


 , (2.27)

Together, these also give us the components of the gradient vector.
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The Sobel kernels can also be thought as 3 × 3 approximations to first-derivative of
Gaussian kernels. That is, it is equivalent to first blurring the image using a 3 × 3
approximation of the Gaussian and then calculating first derivates. This is because
convolution (and derivatives) are commutative and associative:

∂

∂x
(I ∗G) = I ∗ ∂

∂x
G. (2.28)

2.3.2 Second-Derivative Methods

Most edges are, however, not sharp dropoffs. They are often gradual transitions from one
intensity to another. What usually happens in this case is that you get a rising gradient
magnitude, a peak of the gradient magnitude, and then a falling gradient magnitude.
Finding optimal edges (maxima of gradient magnitude) is thus equivalent to finding places
where the second derivative is zero. For two dimensions, there is a single measure, similar
to the gradient magnitude that measures second derivatives, the Laplacian operator ∇2:

∇2 = ∇ · ∇ =




∂
∂x

∂
∂y


 ·




∂
∂x

∂
∂y


 =

∂2

∂x2
+

∂2

∂y2
. (2.29)

Laplacian The Laplacian of the Gaussian method finds edges by looking for zero cross-
ings after filtering an image with a Laplacian of Gaussian filter (this filter actually
calculate the second derivative of an image). The finite differences approximation for
the second derivative is:

∂2I(x, y)

∂x2
≈ [I(x+ 1, y) − I(x, y)] − [I(x, y) − I(x− 1, y)] (2.30)

= I(x+ 1, y) − 2I(x, y) + I(x− 1, y) (2.31)

Finally, the convolution kernel for this method leads to:




0 −1 0
−1 4 −1
0 −1 0


 . (2.32)

The drawback of this method is very susceptible to noise. This sensitivity comes
not just from the sensitivity of the zero-crossings, but also of the differentiation. In
general, the hight the derivative, the more sensitive the operator.

All these edge detector filters lead to interesting results but none of them gives enough
resolution and accuracy to be embedded in our system. The solution is provided by two
more advanced techniques of edge detection: Canny edge detector and contrast-based edge
detector.



CHAPTER 2. SIGNAL PROCESSING BACKGROUND 26

(a) (b) (c)

(d) (e) (f)

Figure 2.2: Edge detectors comparison. (a) Original Lena image, (b) Sobel detector, (c)
Prewitt detector, (d) Roberts detector, (e) Laplacian detector, (f) Canny detector. To
obtain the results shown here, the estimation of the first derivative has been thresholded
in order to facilitate the comparison between them.

2.3.3 Canny Edge Detector

Among all the existing edge detectors, Canny’s one (proposed in [8]) is known to many as
the optimal edge detector. Canny’s intentions were to enhance the many edge detectors
already proposed already by taking into account a list of criteria:

• The first, and most obvious, is low error rate; it is important that edges occurring in
images should not be missed and that there should be no responses to non-edges.

• The second criterion is that the edge points must be well localized, in other words,
the distance between the edge pixels found by the detector and the actual edge has
to be minimum.

• A third criterion is to have only one response to a single edge. This was implemented
because the first two points were not substantial enough to completely eliminate the
possibility of multiple responses to an edge.
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Based on this criteria, the Canny edge detector first smoothes the image to eliminate
noise by convolving it with a Gaussian filter. Then finds the image gradient to highlight
regions with high spatial derivatives. The algorithm then tracks along these regions and
suppresses any pixel that is not at the maximum. The gradient array is now further
reduced by hysteresis; hysteresis is used to track along the remaining pixels that have not
been suppressed. This hysteresis uses two thresholds and if the magnitude is below the first
threshold it is set to zero (made a nonedge). If the magnitude is above the high threshold,
it is made an edge and if the magnitude is between the two thresholds, then it is set to
zero unless there is a path from this pixel to a pixel with a gradient above.

In fact, this method gives better results than the other methods proposed in the former
section. As depicted in Figure 2.2, Canny’s edge detector detects many of the existing
edges present in the image. But this is not enough for our purposes: an edge detector is
required to be able to deal with all types of natural images, even the ill-posed ones, that
is images with strong contrast or low luminance. In this case, Canny’s edge detector gives
poor results hence, other techniques are required. Furthermore, we would like to have an
edge detector able to detect in the same way as the visual perception does: by detecting
contrast differences.

2.3.4 Contrast measures

One of the main drawbacks of detecting edges in images is to deal with images that have
high dynamic ranges. For example, let us examine a natural outdoor scene on a bright
sunny day, one can easily observe huge luminance differences between areas in the shadow
and in bright sunlight. The ratio can easily be in a range of 1 to 1000. When we try to
apply the standard edge detection algorithms we notice that they detect the edges in the
shadow areas weakly or event do not detect them. For our applications, it is necessary to
have an edge detector that detects the edges locally not to mask the weak edges with the
the strong ones. This property will be used into the creation of the probability masks in
Chapter 3.

For our purposes, the contrast measure should exhibit a maximum at the edges loca-
tions, should decrease monotonically away from the edge and should not exhibit any zero
crossing. This can simply be done by taking the derivative amplitude of the image, which
can be computed by combining the derivatives along the lines and the columns of the im-
age [46]. First, let us define a Gaussian pyramid to filter the different frequency bands of
the original image. This pyramid is given by the convolution of the original image by the
Gaussian filters defined as

φ̂j(ωx, ωy) , φ̂(2jωx) · φ̂(2jωy) (2.33)

φ̂(ω) = e−
ω2

2σ2 . (2.34)

In order to avoid aliasing when sub-sampling the different bands of the pyramid, σ is
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set to σ = 0.45. Then the derivative can be calculated:

D̂
(x)
j (ωx, ωy) = jωx · φ̂j(ωx, ωy) · Î(ωx, ωy) (2.35)

D̂
(y)
j (ωx, ωy) = jωy · φ̂j(ωx, ωy) · Î(ωx, ωy) (2.36)

Dj(x, y) =

√(
D

(x)
j (x, y)

)2

+
(
D

(y)
j (x, y)

)2

, (2.37)

where Dj is the amplitude of the derivative of the image in the j-th level of the multires-

olution pyramid and φ̂j the low-pass filter (expressed in Fourier domain) used to get the
j-th level of the multi-resolution pyramid from image I. If the cutoff of the low-pass filter
is small enough compared to the Nyquist sampling rate, the derivative can be computed
using a very simple difference operator:

Dj(x, y) ' 2j−1

√
(I (x+ 1, y) − I (x− 1, y))2 + (I (x, y + 1) − I (x, y − 1))2. (2.38)

Finally, the contrast CD
j (x, y) is obtained by dividing the derivate by a low-pass image:

CD
j (x, y) =

{
Dj(x,y)

φj+1∗I(x,y)
, Dj(x, y) > 0

0, else
. (2.39)

2.4 Texture detection

2.4.1 Background

Although there is no strict definition of the image texture, it is easily perceived by humans
and is believed to be a rich source of visual information, about the nature and three-
dimensional shape of physical objects. Generally speaking, textures are complex visual
patterns composed of entities, or subpatterns, that have a characteristic brightness, color,
slope, size, etc. Thus texture can be regarded as a similarity grouping in an image [79].
The local subpattern properties give rise to the perceived lightness, uniformity, density,
roughness, regularity, linearity, frequency, phase, directionality, coarseness, randomness,
fineness, smoothness, granulation,etc., of the texture as a whole [59].

In texture analysis and detection there are two major issues:

• Feature extraction: to compute a characteristic of a digital image able to numerically
describe its texture properties.

• Texture discrimination: to partition an image into regions each corresponding to a
perceptually homogeneous texture.

Approaches to texture analysis are usually categorised into four different types:

• Structural.
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(a) (b)

(c) (d)

Figure 2.3: High contrast images edge detection. In picture (a) there is the original image
showing a high contrast between the Wat-Arun temple (Bangkok) at the back and the
eagle in first plane. Picture (b) shows the inefficiency of the Gauss-Sobel estimation of the
first derivative to detect the edges in the low contrasted areas (the eagle). In figure (c),
threshold Canny’s edge detector based on the results of (b) is unable to detect these weak,
low contrasted, edges. Finally, in figure (d), contrast measure to detect the edges performs
properly to detect the weak edges.

• Statistical.

• Model-based.

• Transform methods.

Structural approaches ([45], [59]) represent texture by well-defined primitives (called
microtextures) and a hierarchy of spatial arrangements (macrotextures) of those primitives.
To describe the texture, one must define the primitives and the placement rules. The choice
of a primitive (from a set of primitives) and the probability of the chosen primitive to be
placed at a particular location can be a function of location or the primitives near the
location. The advantage of the structural approach is that it provides a good symbolic
description of the image; however, this feature is more useful for synthesis than analysis
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tasks. The abstract descriptions can be ill defined for natural textures because of the
variability of both micro- and macrostructure and no clear distinction between them. A
powerful tool for structural texture analysis is provided by mathematical morphology ([82],
[13]). It has proved to be useful for bone image analysis, e.g. for the detection of changes
in bone microstructure.

In contrast to structural methods, statistical approaches do not attempt to understand
explicitly the hierarchical structure of the texture. Instead, they represent the texture in-
directly by the non-deterministic properties that govern the distributions and relationships
between the grey levels of an image. Methods based on second-order statistics (i.e. statis-
tics given by pairs of pixels) have been shown to achieve higher discrimination rates than
the power spectrum (transform-based) and structural methods ([93]). Human texture dis-
crimination in terms of texture statistical properties is investigated in [54]. Accordingly, the
textures in grey-level images are discriminated spontaneously only if they differ in second
order moments. Equal second order moments, but different third-order moments require
deliberate cognitive effort. This may be an indication that also for automatic processing,
statistics up to the second order may be most important ([70]). The most popular second-
order statistical features for texture analysis are derived from the so-called co-occurrence
matrix ([45]).

Model based texture analysis ([17], [74], [12], [22], [64], [85]), using fractal and stochas-
tic models, attempt to interpret an image texture by use of, respectively, generative image
model and stochastic model. The parameters of the model are estimated and then used
for image analysis. In practice, the computational complexity arising in the estimation of
stochastic model parameters is the primary problem. The fractal model has been shown to
be useful for modelling some natural textures. It can be used also for texture analysis and
discrimination ([74], [11], [55]); however, it lacks orientation selectivity and is not suitable
for describing local image structures.

Transform methods of texture analysis, such as Fourier [78], Gabor [20],[7] and
wavelet transforms [61], [58] represent an image in a space whose co-ordinate system has
an interpretation that is closely related to the characteristics of a texture (such as frequency
or size). Methods based on the Fourier transform perform poorly in practice, due to its lack
of spatial localization. Gabor filters provide means for better spatial localization; however,
their usefulness is limited in practice because there is usually no single filter resolution at
which one can localize a spatial structure in natural textures. Compared with the Gabor
transform, the wavelet transforms feature several advantages:

• varying the spatial resolution allows it to represent textures at the most suitable
scale,

• there is a wide range of choices for the wavelet function, so one is able to choose
wavelets best suited for texture analysis in a specific application.

These properties make the wavelet transform attractive for texture segmentation. The
problem with critically sampled wavelet transform is that it is not translation-invariant
[5].
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2.4.2 Simoncelli’s Texture Detector

Among all these methods, statistical approach to texture analysis have been chosen due
to its good performance on texture detection. There are few methods able to perform
an analysis of an image to segment the textures but we have been chosen the method
developed by E.Simoncelli and J.Portilla [84]. The model is parameterized by a set of
statistical descriptors and the data given by them will allow to distinguish between a
texture area or not. Furthermore, the choices of the set of statistical parameters have been
made according to what is known for the Human Visual System (HVS). That is, how the
textures are perceived by our eyes, so a good model for our purposes.

This texture detector is based on the decomposition of the original image I0 over a
steerable pyramid. This steerable pyramid is a linear multi-scaled, multi-oriented image
decomposition. This representation is translation-invariant and rotation-invariant. The
filters used to perform this steerable pyramid are inspired in the response of the neurons in
the primary visual cortex to obtain a result closer to the human perception. For a detailed
explanation over the construction of this pyramid, review [84] and [83].

Loosely speaking, Simoncelli’s texture detector is based on the following steps:

1. Define the initial parameters, that is: number of scales (Nsc) and orientations (Nor)
for the steerable pyramid and number of pixel neighbors (Na).

2. Compute pixel statistics of the original input image I0 (mean, variance, skewness,
kurtosis, minimum and maximum).

3. Build the steerable pyramid for I0.

4. Perform a decomposition and obtain statistic parameters for each level.

Then, with the combination of the obtained parameters, we can obtain a function to
decide if a pixel into I0 belongs to a texture area or not. Simoncelli’s method is a complex
procedure, hence we let the reader to get inside by reading the former bibliographical
references, specially on [84]. Results on the efficiency of Simoncelli’s method can be shown
in Figure 2.4. Empirically, it has been found that a window size of 16 pixels gives good
results.

2.5 Quality metrics

Quality metrics would be described as all the tools that help to state a comparison be-
tween a target image (for instance, an image that have been distorted by any process) and
a reference one. A quality metric must give a quantized measure based on an objective or
subjective criteria (not strictly analytic). In order to be able to design reliable quality met-
rics, it is necessary to understand what ”quality” means to the viewer. Viewers’ enjoyment
when looking at an image or video depends on many factors. One of the most important
is of course the content and material. Provided the content itself is at least ”watchable”,
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(a) (b) (c)

(d) (e) (f)

Figure 2.4: Simoncelli’s texture detector performance. Parameters have been set as Nsc =
2, Nor = 4 and Na = 7. For the images (a), (b) and (c), there have been calculated the
texture over windows of 8,16 and 32 pixels on the image BABOON respectively. In the
images (d), (e) and (f), the same procedure has been performed over BARBARA image.

visual quality plays a prominent role. Research has shown that perceived quality depends
on viewing distance, display size, resolution, brightness, contrast, sharpness, colorfulness,
naturalness and other factors ([1],[56],[80]).

It is also important to note that perceived quality is not necessary equivalent to fidelity,
i.e. the accurate reproduction of the original. For example, sharp images with high contrast
are usually more appealing to the average viewer [81]. Likewise, subjects prefer slightly
more colorful and saturated images despite realizing that they look somewhat unnatural
[77],[95].

Most ”quality” metrics are actually fidelity metrics based on the comparison of the
distorted image with a reference and neglect these phenomena. The reason for this is that
without any reference it is very difficult for a metric to tell apart distortions from desired
content, whereas humans usually are able to make this distinction from experience.

In the next sections, a short review on the pixel-based metrics is done as well as its
unavailability to perform a quality measure according with the Human Visual System.
Other metrics have been proposed [68] taking in consideration the peculiarities of the
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Human Visual System and one of them, the MPQM-metric [6], will be introduced.

2.5.1 Pixel-Based Metrics

The mean squared error (MSE) and the peak signal-to-noise ratio (PSNR) are the most
popular difference metrics in image and video processing. The MSE is the mean of the
squared differences between the gray-level values of pixels in two pictures I and Ĩ:

MSE =
1

NxNy

Nx−1∑

x=0

Ny−1∑

y=0

[
I(x, y) − Ĩ(x, y)

]2
, (2.40)

for pictures of size Nx × Ny. The average difference per pixel is thus given by the root
mean squared error RMSE =

√
MSE.

The PSNR in decibels is defined as:

PSNR = 10 log
m2

MSE
, (2.41)

where m is the maximum value that a pixel can take (e.g. 255 for 8-bit images). Note that
MSE and PSNR are well-defined only for luminance information; there is no agreement on
the computation of these measures for colour images.

Technically, MSE measures image difference, whereas PSNR measures image fidelity, i.e.
how closely an image resembles a reference image, usually the uncorrupted original. The
popularity of these two metrics is due to the fact that minimizing the MSE (or maximizing
the PSNR) is equivalent to maximum likelihood estimation for independent measurement
error with normal distribution. Besides, computing MSE and PSNR is very easy and
fast. Because they are based on a pixel-by-pixel comparison of images, however, they
only have a limited, approximate relationship with the distortion or quality perceived by
human observers. In certain situations, the subjective image quality can be improved
by adding noise and thereby reducing the PSNR. Dithering of color images with reduced
color depth, which add noise to the image to remove the perceived banding caused by the
color quantization, is a common example of this. Furthermore, the visibility of distortions
depends to a great extent on the image content, a property known as masking. Distortions
are often much more disturbing in relatively smooth areas of an image than in texture
regions with a lot of activity, an effect not taken into account by pixel-based metrics.
Therefore the perceived quality images with the same PSNR can actually be very different
(see Figure 2.5). This phenomena is known as masking.

2.5.2 Masking

Masking occurs when a stimulus that is visible by itself cannot be detected due to the
presence of another. Sometimes the opposite effect, facilitation, occurs: a stimulus that
is not visible by itself can be detected due to the presence of another. Within the frame-
work of image processing it is helpful to think of the distortion or coding noise being
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masked (or facilitated) by the original image or sequence acting as background. Masking
explains why similar distortions are disturbing in certain regions of an image while they
are hardly noticeable elsewhere (Figure 2.5). Several different types of spatial masking can
be distinguished [57],[92] but this distinction is not clear-cut.The terms contrast masking,
edge masking, and texture masking are often used to describe masking due to strong local
contrast, edges, and local activity, respectively.

2.5.3 MPQM Metric

Moving Pictures Quality Metric (MPQM) was introduced first in [6] as a quality measure
that takes into account the human perception. This metric is based on a multi-channel
model of human vision [15],[19] and a posterior masking of the input image. This multi-
channel decomposition of the input image is done taking into account the responses of the
individual visual receptive cells (V1). An analytic form of this norm is:

MPQM =


 1

N

N∑

c=1

(
1

NxNy

Nx∑

x=1

Ny∑

y=1

|e[x, t, c]|
)β



1
β

, (2.42)

where e[x, y, c] is the masked error signal at position (x, y) and in the channel c; Nx and
Ny are the horizontal and vertical dimensions of the image; N is the number of channels.
The exponent of this Minkowski summation is β and has a value of 4, which is close to the
human visual behavior [91].

The only drawback of this metric is its high correlation with the PSNR metric.
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(a) (b)

Figure 2.5: Two images with identical PSNR or 33.2 dB. The same amount of noise has
been added to a rectangular area at the top on the left and at the bottom on the right.
The noise is much more visible in the sky than on the river due to strong masking, which
PSNR does not take into account.



Chapter 3

Adaptive Greedy Approximations

3.1 Introduction

For data compression applications and fast numerical methods it is important to accurately
approximate functions from a Hilbert space H using a small number of vectors from a
given family {gγ}γ∈Γ. The standard problem in this regard is the problem of M -term
approximation where one fixes a basis and looks to approximate a target function f by
a linear combination of M terms of the basis. For any M > 0, we want to minimize the
aproximation error

ε (M) = ‖f − f̃‖ =
∥∥∥f −

∑

γ∈IM

cγgγ

∥∥∥, (3.1)

where IM ∈ Γ is the subspace formed by the M vectors that approximate our function f ,
cγ are the ponderation coefficients and ‖ · ‖ is a general norm.

When the basis is orthogonal (a wavelet basis for instance), then, this type of approx-
imation is the starting point for compression algorithms. In this special case, when an
orthogonal basis {ψk}Nk=1 ∈ H (dimH = N) is taken to perform our M -term decomposi-
tion, this decomposition will be unique

f =
M∑

k=1

ck (f)ψk + ε (M) M < N, (3.2)

where the coeficients {ck (f)}Mk=1 are the set of the Fourier coefficients of f , that is, the
set of M vectors which have the largest inner products within 〈f, ψk〉Nk=1. The problem of
M -term approximations with regard to a basis has been studied thoroughly in [26],[24],[23].

One way to greatly improve these approximations consists in enlarging the collection
{gγ}γ∈Γ beyond a basis. This enlarged, redundant family of vectors will be called dictio-
nary. To be more precise, we define a dictionary as a family D = {gγ}γ∈Γ of vectors in
a N−dimensional Hilbert space H, where the cardinality of D is P and P > N . All the
vectors of D accomplish that ‖gγ‖ = 1 and the finite linear expansions of D are dense in H
(spanD = H) [63]. For our purposes, the application of adaptive greedy approximations

36
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to image processing, we take H = L2(R2) 1 and we will call the vectors belonging to D as
atoms.

Under an overcomplete basis (dictionary) the decomposition of a signal is not unique
and this redundancy can offer some advantages (and also few drawbacks). One is that
there is greater flexibility in capturing structure in the data. For example, if a signal is
largely sinusoidal, it will have a compact representation in a Fourier basis. Similarly, a
signal composed of chirps is naturally represented in a chirp basis. Combining both of
these bases into a single overcomplete basis would allow compact representations for both
types of signals [14],[62],[27]. It is also possible to obtain compact representations when the
overcomplete basis contains a single class of basis functions, for instance: an overcomplete
Fourier basis, with more than the minimum number of sinusoids, can compactly represent
signals composed of small number of frequencies.

When the dictionary is redundant, finding a family of M vectors that approximates f
with an error close to the minimum is clearly not achieved by selecting the vectors that
have maximal inner products with f [21]. It is proven in [21] that for general dictionaries
the problem of finding an M -element optimal approximations belongs to a class of compu-
tationally intractable problems: the set of NP-hard problems. That means that there is no
known polynomial time algorithm that can compute the approximation f̃ that minimizes
‖f − f̃‖ [18],[41].

Because of the difficult of computing optimal expansions, we turn to suboptimal al-
gorithms: pursuit algorithms or adaptive greedy algorithms. These algorithms reduce
the computational complexity by searching for efficient but non-optimal approximations.
Within this family of algorithms we can enumerate Matching Pursuit (with its variants)
and Basis Pursuit, among others [63],[27].

Under certain circumstances the approximation given by the Matching Pursuit algo-
rithms can achieve sparse characteristics due to the fact that M (the number of terms
to make this approximation) is much smaller than the dimension. A sufficient condition
is to have at least two orthogonal vectors in the dictionary and, at certain point of our
decomposition, be able to decompose the residual part of the approximation as a linear
combination of those two orthogonal vectors to achieve zero error. The sparseness con-

1Notation:
The space L2(R2) is the Hilbert space of complex valued functions such that

‖f‖ =

∫ +∞

−∞

∫ +∞

−∞

|f (x, y) |2 dx dy

The inner product of (f, g) ∈ L2(R2) is defined by

〈f, g〉 =

∫ +∞

−∞

∫ +∞

−∞

f(x, y) g(x, y) dx dy

And the norm is defined as
‖f‖ = 〈f, f〉1/2
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(a) (b) (c)

(d) (e)

Figure 3.1: Example of representations. In the figures (a), (b) and (c) we have the de-
composition over a orthogonal basis of a curve with 3, 9 and 17 terms respectively; in
the figures (d) and (e) we have the decomposition of the same curve over an overcomplete
dictionary with 3 and 9 terms. Using an overcomplete dictionary we capture the structure
of the curve with much more less terms than with a decomposition using an orthogonal
basis.

straint refers to the requirement that to represent the approximation function f̃ we must
have as few ck coefficients as possible [76]. Furthermore, it is proved that Matching Pursuit
produces a (ε,M)-Sparse2 approximation with exponential decay of the error [63],[88]. For
any M -term approximation obtained with Matching Pursuit we have

‖f − f̃MP‖ ≤
√

1 +
2µM2

(1 − 2µM)2‖f − f̃Opt‖, (3.3)

being µ the coherence of the dictionary D (see Section 4.2.1), ‖f− f̃MP‖ the approximation
obtained by Matching Pursuit and ‖f − f̃Opt‖ the optimal approximation. That means
that the error is bounded, hence the assumption of Matching Pursuit as a (ε,M)-Sparse
problem is demonstrated.

2A (ε,M)-Sparse problem or a (ε,M)-Approximation refers to an approximation that achieves ‖f−f̃‖ < ε

with M terms.
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3.2 Matching Pursuit

3.2.1 Introduction

Matching Pursuit algorithm was introduced by Mallat and Zhang [62] giving examples for
the application on unidimensional time-frequency signals (but it can be applied to any type
of signal). This method produces a suboptimal function expansion by iteratively choosing
the waveforms from a general dictionary (typically a rich collection of potential atoms in
a Hilbert space) that best match the function’s structures. The choice of the functions is
performed through a progressive refinement of the signal approximation with an iterative
procedure [21]. This method is closely related to the algorithms used in statistics [36].

The Matching Pursuit algorithms have already found applications in medicine [35] and
image [4] and video coding [3] (though in video coding it is usually used to code the motion
estimation errors). Other flavors of Matching Pursuit can also be found in [62] and [63]
like the Orthogonalised Matching Pursuit that is able to achieve a zero estimation error
by orthogonalizing the directions of projection, with a Gram-Schmidt procedure proposed
by [73]. The resulting orthogonal pursuit converges with a finite number of iterations,
which is not the case for a non-orthogonal pursuit. The price to be paid is the important
computational cost of the Gram-Schmidt orthogonalization, though this is not used due to
practical reasons (fast algorithms to perform this Orthogonal Matching Pursuit have been
already proposed in [42]).

With this thesis we want to show that Matching Pursuit is much more efficient to do
an image approximation than the usual methods used nowadays in the standard formats
(DCT for JPEG [51] and wavelets for JPEG2000 [52]), so it is possible to transmit an image
at lower bit-rate. Matching Pursuit, though results strongly depended on the choice of the
dictionary(ies) used. In many applications, Gabor functions or symmetric dictionaries are
used; we can greatly improve the results by using two or more dictionaries that catch
more efficiently different features of the image (like edges or textures). Furthermore, in
this thesis few Matching Pursuit hybrid schemes to perform decompositions over more
than one dictionary taking into account the characteristics of the Human Visual System
modelled by probability masks according to the limitations and peculiarities of our vision
system will be exposed. This representations will not achieve best PSNR results than the
standard Matching Pursuit algorithm described here but better results according with the
visual quality.

3.2.2 Formulation

Matching Pursuit is a greedy algorithm that decomposes any signal belonging to a Hilbert
space H into a linear expansion of waveforms that are selected from a redundant dictionary
(or set of dictionaries) D of functions. These waveforms are iteratively chosen to best match
the signal structures, producing a sub-optimal expansion. Vectors are selected one by one
from the dictionary, while optimizing the signal approximation at each step k (this is the
minimization ‖f − f̃‖k with reference to ‖f − f̃‖k−1).
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Let D = {gγ}γ∈Γ be a dictionary of P > N ×M vectors, with the properties cited
above. This dictionary includes N ×M linearly independent vectors that define a basis of
the space R

N×M of signals with size N ×M . The Matching Pursuit algorithm begins by
projecting the target function f on a vector gγ0 ∈ D and computing the residue Rf (see
[62] and [63]):

f = 〈f, gγ0〉gγ0 +Rf, (3.4)

where Rf is the residual vector after approximating f in the direction of gγ0 . Since we
impose Rf to be orthogonal to gγ0 :

‖f‖2 = |〈f, gγ0〉|2 + ‖Rf‖2. (3.5)

As we want to minimize ‖Rf‖2 = ‖f‖2 − |〈f, gγ0〉|2 we must choose gγ0 ∈ D such that
|〈f, gγ0〉| is maximum. In some cases, it is not computationally efficient to find the solution
given by the Matching Pursuit algorithms, and a Matching Pursuit-suboptimal solution is
computed instead:

|〈f, gγ0〉| ≥ α sup
γ∈Γ

|〈f, gγ〉| , (3.6)

where α ∈ (0, 1] is an optimality factor (α = 1 means that we choose the optimal solution
given by the Matching Pursuit method).

Into the next step, Matching Pursuit subdecomposes iteratively the residue Rf by
projecting it on a vector of D that matches Rf at best. If we consider R0f = f and we
suppose the n-th order residue Rnf(n ≥ 0) has been computed, the next iteration will
choose gγn

∈ D such that:

|〈Rnf, gγn
〉| ≥ α sup

γ∈Γ
|〈Rnf, gγ〉| . (3.7)

With this choice Rnf is projected onto gγn
and decomposed as follows:

Rnf = 〈Rnf, gγn
〉gγn

+Rn+1f, (3.8)

where Rn+1f and gγn
are orthogonal, so the quadratic module of the previous equation is:

‖Rnf‖2 = |〈Rnf, gγn
〉|2 + ‖Rn+1f‖2. (3.9)

From 3.8, we can see that the decomposition of f is given by:

f =
N−1∑

n=0

〈Rnf, gγn
〉gγn

+RNf, (3.10)

and with the same principle we can also deduce from 3.9 that the module of the signal f
is:

‖f‖2 =
N−1∑

n=0

|〈Rnf, gγn
〉|2 + ‖RNf‖2, (3.11)
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where ‖RNf‖ converges exponentially to 0 when n tends to infinity3:

lim
n→∞

‖Rnf‖ = 0. (3.12)

Hence

f =
∞∑

k=0

〈Rkf, gγk
〉gγk

, (3.13)

and

‖f‖ =
∞∑

k=0

∣∣〈Rkf, gγk
〉
∣∣2 . (3.14)

Only with Orthogonalised Matching Pursuit4 [29], [63], [21] the residue is reduced to
0 in a finite number of iterations but, in most signal processing applications, the fact of
having a non-zero residual is not relevant, due to the fact that the image distortion is under
the visible threshold. Properties of Matching Pursuit can be fount in Appendix C.

3.2.3 Extensions

It is obvious that by choosing the atom that gives the largest absolute scalar product leads
to maximize the PSNR ratio of the reconstructed image at each iteration. Few extensions
could be suggested:

• Use of a different norm. Instead of maximizing the absolute value of the scalar
product, other metrics could be used. A proposal would be to maximize a metric
based on the human perception of images, that is, choose the atoms that are more
suitable for our HVS at each iteration (MPQM,...).

• Choose more than one atom per iteration. Not all the atoms are localized in the
same space area, hence, at the n-th iteration, all the atoms that not collide in space
[60] could be chosen. This procedure will not lead to the same results given by the
standard Matching Pursuit, but the compromise between speed and accuracy arises.
With this method Matching Pursuit is speed-up and the final result do not differ in
a noticeable way from the standard Matching Pursuit.

3See Appendix B for a detailed demonstration
4It is also true that certain types of signals (for example, signals composed by a linear combination of

atoms) can achieve zero error without this method.
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3.3 Full search Matching Pursuit via FFT

Matching Pursuit is a greedy algorithm that decomposes a signal over a redundant set of
functions, the dictionary. As we have seen in the former section, the algorithm computes
for each iteration all the scalar products 〈Rkf, gγk

〉 (in the k-th iteration) and then chooses
the one with the largest absolute value. If we analyze in detail the computational load this
calculations generate, for example for the dictionary DAR formed by Anisotropic Refine-
ment atoms (see Section 4.3 for more references about this dictionary) we will find that it
is huge. For a square image of size Nx×Nx, the number of scalar products between images
to be done in the computation of one decomposition term is

N2
x ×

1

2
(3 × (log2 (Nx) − 2) + 1)2 × 18 ∼ O

(
N2
x × log2

2 (Nx)
)
, (3.15)

equivalent to have this amount of operations per coefficient

O
(
N4
x × log2

2 (Nx)
)
. (3.16)

Then, optimizations of this algorithms are required in order to reduce the computational
load. But here arises another problem: when performing Matching Pursuit, it can be
chosen between generating the atoms at each iteration to compute the scalar products
or storing them in memory in order to save computational time. The option to generate
and store the atoms in the memory is the optimal one in terms of speed but on the other
hand there is the problem of memory capacity. Hence, there is a compromise between
memory and speed. Moreover, to perform the Matching Pursuit decomposition without any
optimization implies to store in memory all the functions of the dictionary (a prohibitive
amount of memory!, for further details on the size of the dictionaries see Chapter 4). In
the pursue of optimizations, suboptimal approximations of Matching Pursuit have been
proposed by using genetic algorithms ([31], [32]) that reduce the computational load but
the drawback of this type of techniques are the non repeatibility of the process, that is: if
you apply twice the algorithm over the same image you obtain different results.

An optimization, proposed by [34], is to use the properties of the Discrete Fourier
Transform to reduce the computational load (using also the Fast Fourier Transform) and
reduce though the memory required to store the dictionary. This optimization is based on
the property of the duality product-convolution of the DFT already introduced in the first
chapter.

Here we do a detailed explanation. Let D be a dictionary defined by a set of parameters
γ = (ℵ,p) where ℵ are the set of parameters concerning the shape of the atom (orienta-
tion,scaling,...) and p = (px, py) the point into the image where the atom will be centered.
Let us define V ∈ D the sub-dictionary generated by γ = (ℵ,0), the set of atoms centered
in the middle of the image 5. Strictly applying the Matching Pursuit algorithm, to find the
most powerful atom at the n-th iteration of the process we should compute all the scalar

5For this expanation, let us consider an image bounded into [−Nx

2
, Nx

2
] × [−Ny

2
,

Ny

2
].
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products |〈Rnf, gγn
〉| with gγn

∈ D and then choose the largest one. The search of the
most powerful can be rewritten as the search of zγn

(x, y) ∈ V that maximizes

max
γn

|〈Rnf, zγn
(x− px, y − py)〉| , (3.17)

with px ∈ [−Nx

2
, Nx

2
] and py ∈ [−Ny

2
, Ny

2
]. With a simple manipulation, the Equation 3.17

can be formulated in terms of a convolution operation

max
γn

∥∥∥Rnf ∗ zγn
(x, y)

∥∥∥, (3.18)

bounded into the frame [−Nx

2
, Nx

2
] × [−Ny

2
, Ny

2
]. At this point, by applying the duality

product-convolution of the DFT it leads to

Rnf ∗ zγn
(x, y)

F−→ R̂nf · Ẑγn
(x, y), (3.19)

where R̂nf and Ẑγn
(x, y) are the Fourier transforms of Rnf and zγn

(x, y) respectively.
Finally, to search the most powerful atom by using this DFT based method can be written
as

max
γn

∥∥∥Rnf ∗ zγn
(x, y)

∥∥∥ = max
γn

∥∥∥F−1
{
R̂nf · Ẑγn

(x, y)
}∥∥∥. (3.20)

This full-search method proposed below takes advantage of the FFT usage, saving a lot
of computational load. Exactly, the Matching Pursuit complexity for one atom is reduced
to

O
(
N2
x × log3

2 (Nx)
)
. (3.21)
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Figure 3.2: FFT implementation of Matching Pursuit algorithm. In the figure (a) is
depicted the initialization process: the frequency spectrum of the atoms belonging to the
dictionary are stored in memory as well as a ponderation mask to avoid the effects of those
atoms placed in the borders of the image. Those atoms do not have unitary norm, hence
its scalar product must be compensated to maintain the properties of the dictionary. In
the figure (b), the FFT-Matching Pursuit implementation is shown (see Equation 3.20).
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3.4 Weak Matching Pursuit

As we will see in Chapter 5, this thesis is focused on the use of probability masks to
aid Matching Pursuit standard algorithm to deal efficiently with more than one dictionary.
Furthermore, a simple model of the perception by the Human Visual System of these results
will be analyzed and, finally, an Hybrid Matching Pursuit coder is presented. This coder
would achieve both the sparsity and decomposition of the Matching Pursuit algorithm and
a representation of the image that would be more adapted to our early visual system (even
having a worst PSNR ratio in comparation with the pure Matching Pursuit algorithm).

The main idea of this model is to ponder the scalar products obtained by the standard
Matching Pursuit algorithm by a probability mask (or even more masks in the case of a
multi-dictionary decomposition) and then choose the pondered atom with bigger scalar
product (note than once the pondered atom is chosen, the reconstruction and updating of
the residual partRnf is performed with the original scalar product unless we would lead to a
senseless result). Hence, it must be justified that, even with this masking of the coefficients,
the algorithm leads to stable solutions, it achieves a perfect signal representation when an
infinite number of atoms is used. This modification of the Matching Pursuit was introduced
by [86] and is known as Weak Matching Pursuit.

3.4.1 Formulation

Let τ = {tk}∞k=1, 0 ≥ tk ≥ 1 be a weakness sequence. We can define the Weak Matching
Pursuit (or Weak Greedy Algorithm as noted in [86]) similarly as the Matching Pursuit
algorithm:

1. Define R0f τ = f .

2. Take gτγn
∈ D satisfying:

∣∣〈Rnf τ , gτγn
〉
∣∣ ≥ tn sup

γ∈Γ

∣∣〈Rnf τ , gτγ〉
∣∣ . (3.22)

3. As we set in 3.8, we actualize the residue by projecting it onto gτγn
:

Rnf τ = 〈Rnf τ , gτγn
〉gτγn

+Rn+1f τ . (3.23)

4. Then, we can construct our approximation

f =
N−1∑

n=0

〈Rnf τ , gτγn
〉gτγn

+RNf τ . (3.24)

Once Weak Matching Pursuit has been formulated, we must analize under which con-
ditions the sequence τ = {tk}∞k=1 leads to a stable solution of the decomposition. A first
sufficient condition on τ for the convergence of any f in our Hilbert space H is

lim infk→∞τ = 0. (3.25)
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Also, in the class of monotone sequences τ = {tk}∞k=1, 1 ≥ tk ≥ 0, the condition
imposed by Eq.3.25 is accomplished and, hence, the convergence proved. This particular
type of sequences are those that will arise in further explanations related with the use of
probability masks in the Matching Pursuit process. A full non-trivial demonstration of the
conditions imposed over τ to lead to a stable solution can be found in [87].

3.5 Computing Implementation: Parallel MPI/LAM

and Sparse Routines

To compute the Matching Pursuit decomposition, a huge computational effort has to be
performed and a large amount of memory is required as well. In fact, to perform this
decomposition over a standard machine (let us say a Pentium III at 1.5 Ghz6), the time
required is prohibitive (even with an optimized code it takes few days to obtain a result).
Moreover, regarding with the matter of the memory, even using the Matching Pursuit-
Full Search into the Fourier domain that achieves a lower memory demand, it is still
intractable. Then, both optimizations for memory and computational load are strongly
required to perform a decomposition within an acceptable time and with a machine without
an overdimensioned memory system.

If we look carefully to the properties of the atoms that will be used to perform the
Matching Pursuit decomposition (see Chapter 4), we notice that all them are well localized
both in space and frequency. Hence, as the Fourier Transform of the atoms is stored into the
memory (according with the procedure described in the Section 3.3), it would be possible
to take advantage of its sparsity (well localization in frequency). In fact, if the functions are
stored by using a run-length compression this purpose is achieved. The routines proposed
by [25] are the solution to this problem.

Regarding with the problem of the computation load, strategies to reduce this time
must be found and parallel computing brings us efficient tools to carry out this problem.
A good solution is the Message Passing Interface (MPI) ([67],[50]) that allows to write a
distributed code that is able to perform a Matching Pursuit decomposition in a fraction
of the time needed by a single machine (actually, TMPI = α 1

k
TSINGLE being k the number

of slave machines and α a scaling factor). Even though, this library incorpores a complete
set of functions to control the synchronization and share of data between all the machines
very suitable for our purposes. Furthermore, once again, it is possible to take advantage
of the sparsity presented by the atoms used here. The routines presented in [25] also allow
to perform efficient products between sparse images, saving around a 10% of the initial
computational load.

Finally, the implementation of the Matching Pursuit parallelization is depicted in Figure
3.5. The idea that underlies in this parallelization is to split the computational load in
a set of k slave-machines that send their partial results to master-machine that combines
them. A short review on the function of the whole distributed system is:

6Note for the reader in the future: This data is taken from Summer 2003.
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• Balanced load.The computational load will be distributed in the sense that every
slave-machine will perform a full-search Matching Pursuit over a portion of the orig-
inal dictionary. Hence, the first step is to split the original dictionary in k portions
and assign each one to the slave-machines. But this process must be done smartly,
that is, to distribute the functions in order to balance the computational load over
them. As sparse routines [25] are used, it will not take the same time to perform a
product with a small atom than with a big atom. Hence, the balance of the load must
be done in the sense to assign approximately the same number of atoms of the same
type to each slave. In this way, the time taken by each slave will be approximately
the same then there will not be a bottle-neck that would slow down the system.

• Partial Matching Pursuit. The k slaves have its own copy of the residual image
over which the Matching Pursuit decomposition is done7. Then, each slave performs
a Full Search Matching Pursuit over the portion of the dictionary assigned to it and
chooses the atom that gives the largest absolute scalar product. Afterwards, these
values are sent to the master-machine and it chooses among them the best one. Then,
the chosen atom is stored to create the reconstruction and is also sent back to all the
slaves to update their residual images for the next iteration.

• Synchronization. This issue is always extremely important when dealing with
multiple machine interfaces. This process is carried out by the master-machine that
sets the start time for all the slaves. Hence, this is a synchronous system, otherwise,
an asynchronous system would lead to dead-lock situations (that is when the system
enters in a situation where every machine is waiting for another and it collapses).

7When dealing with MPI systems the communications between machines must be minimum in order
to minimize the effects of the communication channel and improve the performance. Hence, the optimal
way to operate is to make each slave to store its own copy of the residual image instead of transmitting it.
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Figure 3.3: MPI/LAM parallel implementation of Matching Pursuit. In subfigure (a), the
splitting process of the main dictionary into sub-dictionaries for each slave-machine. The
master-machine takes care to make a uniform division of the main dictionary in order to
balance the load of Matching Pursuit (for example, in the number of functions and the
type of them for each slave-machine). Subfigure (b) depicts the parallelized process of
Matching Pursuit.



Chapter 4

Analysis of the dictionaries

4.1 Dictionary usage

Matching Pursuit greedy approximation of functions depends exclusively on the election
on the dictionary/ies the decomposition will be done over. Hence, a careful study over the
design and performance of the dictionary/ies must be done. Many parameters are involved
in the design of a dictionary: shape of the atoms, orientation, scales, frequency (i.e. the
case of Gabor atoms),... The values those parameters take will define the size, properties
and performance of the dictionary. For instance, a careful design of the dictionary would
lead us to reduce its size by eliminating atoms that would never be used (for example,
analyzing the histogram of the atoms, see Section ??). Furthermore, the redundancy of
the dictionary can be controlled (this is the case of the Gabor dictionary presented below).

In this chapter, performance methods like the coherence and the Babel function are
presented, as well as the description and design criteria for the three dictionaries that have
been used for our experiments: the Anisotropic Refinement Dictionary DAR, the Gaussian
Dictionary DG and the Gabor Dictionary DGa.

4.2 Dictionary performance

4.2.1 Coherence

Once the dictionaries are already chosen, a quality parameter might be defined to evalu-
ate how good our choice is. The most fundamental quality parameter associated with a
dictionary is the coherence µ [88], defined as

µ = max
j 6=k

∣∣〈gγj
, gγk

〉
∣∣ gγk

, gγj
∈ D. (4.1)

Roughly speaking, this number measures how much two vectors in the dictionary look
alike. This parameter is not a definitive way to evaluate the performance of the dictionary
since it only reflects the most extreme correlations in the dictionary. Nevertheless, it is

49



CHAPTER 4. ANALYSIS OF THE DICTIONARIES 50

easy to calculate, and it captures well the behavior of uniform dictionaries. In the next
section a new quality parameter that avoids this problem is presented: the Babel function
[88].

Let be H a Hilbert space of dimension N and D an arbitrary dictionary formed by
P atoms. From the coherence function definition it is obvious that an orthogonal basis
has coherence µ = 0 and it is proved, for general dictionaries, that a lower bound on the
coherence is [88]

µ ≥
√

P −N

N (P − 1)
. (4.2)

If this parameters is small enough, we can call a dictionary to be incoherent. A table
of the µ’s parameters for the dictionaries used in this thesis can be computed:

µ
Gaussian Dictionary DG 0.9836
Gabor Dictionary DGa 0.9400
AR Dictionary DAR 0.9964

and we can appreciate that our dictionaries show a high redundancy, so they are not
incoherent. Also, furhter works have been developed on the properties of this parameter
[62],[28] and its relations with different types of dictionaries [47],[44],[43].

4.2.2 The Babel function

The Babel funcion introduced in [88] is a suitable paramter to make a deeper analysis of
the structure of a dictionary. While the coherence parameter does not offer a very subtle
description of a dictionary since it only reflects the most extreme correlations between
atoms, a new quality measure must be defined. When most of the inner products are tiny,
the coherence can be downright misleading (a wavelet packed dictionary exhibits this type
of behavior). The Babel function measures the maximum total coherence between a fixed
atom and a collection of other atoms. In a sense, the Babel function indicates how much
the atoms are ”speaking the same language”. It is much simpler to distinguish Catalan
from Russian than it is to distinguish Catalan from Spanish.

The Babel function is defined as

µ1(m) = max
|Λ|=m

max
ψ

∑

Λ

|〈ψ, gλ〉| , (4.3)

where the vector ψ ranges over the atoms indexed by the complementary of Λ. In other
words, let be gλj

the set of vectors belonging to the set Λ and gλk
those that not belong,

then the Babel function can be rewritten as

µ1(m) = max
|Λ|=m

max
k/∈Λ

∑

j∈Λ

∣∣〈gλk
, gλj

〉
∣∣ . (4.4)
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A close examination of the formula shows that µ1(1) = µ and that µ1 is an increas-
ing function. Nevertheless, the computation of this formula implies an extremely heavy
computational load for a general dictionary. Even with a dictionary that has an analytical
form, the computation is intractable (in few cases is possible to find the analytical form
of the Babel function [88]). For our three dictionaries, the only one that allows a feasible
approximation of the calculation of µ1(m) is the Gaussian Dictionary DG. In fact, we
calculate a lower bound of this function (see Appendix B) for DG depicted in the Figure
4.1. This functions gives an idea about the redundancy of the dictionary. In future work,
the knowledge of this function (or a lower-upper bound) could be taken into account to
design more efficient dictionaries.

Figure 4.1: Babel function µ1(m) for a the Gaussian dictionary DG.

4.3 Designing a Dictionary Set

In a Matching Pursuit process the decisive element is the election of the dictionary (or set of
dictionaries) that will be used to represent our signal. Extensive literature on the design of
dictionaries based on several types of atoms exists: Gabor atoms [62], Anisotropic Refine-
ment [89],[31], chessboard atoms [60], Walsh atoms [90],... or even dictionaries consisting
in the union of few orthonormal bases [44]. In the following sections, the dictionaries used
for our simulations are presented, as well as a design analysis.

The first implementation of Matching Pursuit in [31] was based on the substraction of
the image baseband (via a downsampling process) and, then, coding the result (an image
basically formed by the high frequencies so, edges and textures) using the MP greedy
approximation. This scheme is rather simple: it can be done better in the sense that the
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method does not pay attention to the textures of the image. An improved scheme might
be proposed based on the use of several dictionaries to code the diverse features of the the
image. So let us define a dictionary framework:

• A dictionary to code the low frequencies that is: the baseband of the image. In
previous schemes [31], this baseband was coded directly by coding the downsampled
image (via a determined factor). In the scheme proposed here, the baseband will be
coded by a dictionary based on Gaussian functions that catches pretty efficiently the
flat areas of the image (similarly to what has been done in [34].

• A dictionary to code the edges and contours. This dictionary will be based on
Anisotropic Refined Gabor atoms (AR) as done previously in [31],[89].

• A dictionary to code the textures. It is proved that to code a texture (a pattern)
directly using the AR atoms is extremely inefficient due to the fact that the Matching
Pursuit algorithm wastes a lot of atoms to code this pattern (see Figure 4.3). This
new dictionary will be based on Gabor Atoms (so, Gaussians modulated by various
frequencies according to few constrains we will impose).

Figure 4.2: PSNR ratio for Matching Pursuit approximations using various dictionaries
types over BARBARA image. It is shown that the combined use of Anisotropic Refinement
and Gabor dictionaries (ARGABOR) leads to better PSNR ratios than the use of single
dictionaries (AR or GABOR) because it catches better the structures of the image.
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(a) (b) (c)

(d)

Figure 4.3: Example of texture coding with different dictionaries. Subfigure (a) corresponds
to a detail of BARBARA and (b) and (c) to the Matching Pursuit coding with 50 AR atoms
and GABOR atoms respectively. As reflected in the PSNR diagram (d) the results show
the suitability of GABOR atoms to code textures.

We will join these three dictionaries to make a macro-dictionary. The first approach
to the use of these dictionaries will be to perform the Matching Pursuit decomposition
computing all the scalar products between them and the target image. Nevertheless, other
Matching Pursuit schemes present in this work will apply these dictionaries separately in
localized areas by previously detecting whether a feature is present or not in a determinated
region of our image.

As our dictionary increases in number of functions (in the sense we join our three
dictionaries), the PSNR ratio improves due to the fact that the algorithm have more atoms
to catch the structures of the image. In fact, when PSNR is taken as our quality measure
(objective), it increases by using the three dictionaries. But, in the scheme of Matching
Pursuit presented in this thesis, we will take into account Human Visual System features
so, the PSNR ratio will not be our reference quality measure. Instead of it, subjective
measures and visual quality measures will be used. However, the results of the PSNR
curve for the three dictionaries are depicted in Figure 4.2 showing its performance.
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4.3.1 Dictionary DAR based on AR atoms

The use of dictionaries based on Anisotropic Refinement of Gabor atoms was introduced
by [89] to code the edges of the images more efficiently. Furthermore, it has been shown
in [71] and [33] that the use of Anisotropic Refinement atoms are more suitable for edge
image coding due to the fact that the Human Visual System (HVS) is adapted to this type
of functions [72]. In this way, this type of atoms seems to be the right choice to code the
edges of images.

An anisotropic refined Gabor atom is defined as a combination of a gaussian in an axis
and its second derivative in the other axis

gγ (x, y) = K
(
4x2 − 2

)
e−(x2+y2), (4.5)

where K is a normalization constant to have unitary norm. Assuming that our image has
a size of Nx × Ny pixels, we can define the set of parameters γ = (p, s, θ) necessary to
generate the whole dictionary:

p = [px, py] where px ∈ [0, Nx), py ∈ [0, Ny) translations
s = [sx, sy] scaling factors
θ ∈ [0, π) rotation,

with p the translation vector that will set the center of the atom into the image, s where
sx is the dilation in the x axis and sy is the dilation in the y axis and θ the rotation angle.

At this point, we have to choose our parameters carefully to be sure that this set of
atoms have an associated family that is a frame of L2(R2) [63]. If ∆θ and ∆s are small
enough finite linear expansions of space-frequency atoms are dense in L2(R2), hence this
dictionary is also complete and, then, valid for image coding. To satisfy these conditions
we have chosen our parameters in this way:

• ∆θ = 100.

• {sx, sy} ∈ [0, NN · (blog2(N)c − 3)] ∈ Z where NN ∈ [1, log2(N)] ∈ Z, N =
min(Nx, Ny) and sx > sy.

Once we have defined the parameters to generate the atom’s family, we can define the
procedure to create the atom. This procedure is non-commutative, so, the order is fixed
and its application is:

1. Apply the translation by [px, py] ∈ Z
2.

2. Rotate by θ the translated atom.

3. Scale the translated and rotated atom by σx = 2
sx

NN and σy = 2
sy

NN in the axis x and
y respectively.
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This leads to compute:

xγ =
(x− px) cos(θ) + (y − py) sin(θ))

2
sx

NN

(4.6)

yγ =
(x− px) sin(θ) − (y − py) cos(θ))

2
sy

NN

, (4.7)

and gγ = g(xγ, yγ).

(a) (b)

Figure 4.4: Anisotropic refined Gabor atom.

4.3.2 Our choice

For our experiments, we took into account the experiences related in [31] and our own
empirical results. The obtained parameters that will be used in our experiments are:

Translations The translations must cover the whole image, hence:

[0, 0] ≤ [px, py] ≤ [Nx − 1, Ny − 1]. (4.8)

NN Empirically [31], it has been shown that the quality of the coded image will increase
with NN , but the size of the dictionary too. If NN is too small some artifacts
(lines) will appear in the coded image, and if NN is too large, the computational
load to perform Matching Pursuit becomes prohibitive. A good choice, based in our
empirical experiences, is to take

NN = 3. (4.9)
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Scaling Factors The scaling factors are chosen in a way that the smaller scaling applied
is one and the bigger is the size of the image. So:

2
simin
NN = 1 ; si ≥ 0 (4.10)

2
simax
NN = min(Nx, Ny) ; si ≤ NN log2 (min(Nx, Ny)) , (4.11)

where i = x, y. But to take all the range described here would not be efficient in the
sense that atoms with bigger scales are never chosen. Hence, the range is reduced
and a choice that lead to good results is:

si ∈ [0, NN · (blog2(N)c − 3)], (4.12)

where the factor 3 has been added in order to not take too big scales (that almost
never will be used).

Rotation As previously said, the rotation is in steps of 100 degrees. The phase, in order
to cover all the spectrum, has to go from 0 to π radiants (because all the atoms are
real and have a spectral component in the positive frequency plain and its symmetric
component in the negative plain. Otherwise, it should move from 0 to 2π). So,

phasen = n∆θ = n
π

18
. (4.13)

Size of the dictionary With the former assumptions, the size of the dictionary can be
calculated: 26.836.992 atoms for an image of 128 squared pixels.
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4.3.3 Dictionary DG based on Gaussian atoms

The use of a dictionary based on gaussian functions is fully justified with the aim to code
the baseband of the image. The AR atoms are suitable for coding contours, but they do
not code the low frequency band of the image. In previous works ([31],[32]), the lower
frequencies of an image were coded by either using a downsampled copy of the image or do
not even code it, regarding this work to the atoms of the dictionary itself. The drawback
of using a downsampled image to code the baseband is that it introduces artifacts due to
the downsampling-upsampling process, then baseband coding could be greatly improved
by adding a new dictionary: a gaussian dictionary, introduced by [38]. Also, an attractive
feature is that dictionary will be pretty tiny and will not represent a load for the final
coding process.

A Gaussian atom is defined as:

gγ(x, y) =
√

2Ke−(x2+y2), (4.14)

where γ is the set of parameters to generate the dictionary andK a constant that normalises
the discrete norm of gγ. Assuming our gaussian atoms equiscaled (so that is with a circular
projection) we can define our parameters xγ and yγ :

xτ =
(x− px)

σx
=

(x− px)

2
sx

NN

(4.15)

yτ =
(y − py)

σy
=

(y − py)

2
sy

NN

. (4.16)

where sx = sy = s because we choose isotropic gaussians. The design of the dictionary
must be carefully done in order to cover all the baseband area in the Fourier domain; hence,
to be dense in this frame of the Hilbert space. So, we must impose few constrains on the
s parameter but, for simplicity, let’s call 2

s
NN = σs. We call σs due that this parameter

refers to the spatial σ in contraposition with the frequencial σf . We have to review that
the Fourier transform of a Gaussian is also a Gaussian and their σ’s are connected by:

σs · σf = 2. (4.17)

Applying few constraints we might find the upper and lower bounds of σs:

• σsmax ; The biggest Gaussian we will be able to put in our image (in spatial sense)
will be determined by the image itself: its size (taking the smallest side of an Nx×Ny

pixels image). We know that the 99% of the energy of the gaussian is concentred in
the 6σs area of it. This leads us to:

6 · σsmax = min(Nx, Ny) ; σsmax =
min(Nx, Ny)

6
. (4.18)

This Gaussian will have the lowest frequency representation, so by appliying 4.17 we
find the smallest bandwidth our Gaussians will cover:

BWmin = σf · 3 =
2

σs
· 3 =

36

min(Nx, Ny)
. (4.19)
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Ny

Nx

6σsmax

Figure 4.5: Framework to calculate σsmax

• σsmin
; The previous constrain was found in the spatial domain of the image; this

other is found in the Fourier domain. As we want to cover the baseband of the Fourier
domain, we have already defined the constrain that will give the lowest frequency; to
find the upper bound we have to find the point where our gaussians collide with the
lowest central frequency of the AR dictionary atoms. We have to find the frequency
(ωx, ωy) of the atom with lowest frequency where it have maximum power. First,
let’s find the Fourier transform of a generic AR atom:

Gλ(ωx, ωy) = −πσxω2
xe

−
(σxωx)2+(σyωy)2

4 , (4.20)

where σx = 2
sx

NN and σy = 2
sy

NN are the scaling factors of the anisotropical refined
Gabor atom as we defined in 4.6 and 4.7. To find the maximum of this function we
can impose the condition ωy = 0 due to the simetry of our spectrum. So, we have:

∂Gλ(ωx, 0)

∂ωx
= −2πσxωxe

−
(σxωx)2+(σyωy)2

4

(
1 − (ωxσx)

2

4

)
= 0. (4.21)

Avoiding the trivial solution ωx = 0, it leads to find the lowest frequency ωxmin
of the

AR atoms (so that is when the scaling σx factor is maximum):

ωxmin
=

2

σxmax

. (4.22)

Also this lowest frequency of the Gabor atoms set is the biggest bandwidth our
Gaussian dictionary will represent, that is
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BWmax =
2

σxmax

. (4.23)

Once we have set this lowest frequency, we can find the lower bound of σs. Taking
in consideration:

3σf =
2

σxmax

. (4.24)

Then, by applying 4.17 we find:

σsmin
= 3 · σxmax . (4.25)

(a) (b)

Figure 4.6: Gaussian atom.

4.3.4 Our choice

The design parameters chosen for this Gaussian dictionary are:

Translation We will make the same assumptions done in the previous dictionary.

Scales By strictly applying the relations 4.18 and 4.25 we find that (in concrete for our
squared images of 128 pixels):

σsmax =
128

6
≈ 21 (4.26)

σsmin
= 3σARmax = 3 · 2

12
3 = 48. (4.27)

The reader can see that these bound for σs are not logical in the sense that σsmin
>

σsmax . The reason is because our Anisotropic Refinement dictionary has too big
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σf(max)

σf(min)

σarmin

Figure 4.7: Gaussian design frequency scheme. The bigger circle corresponds to the spec-
trum of the Gaussian with σsmin

(and σfmax inversely) defined by the lowest frequency of
the AR Atoms. The small circle corresponds to the σsmin

(and σfmin
accordingly) defined

by the size of the image.

scales. There would be two solutions: to reduce the scales of the AR dictionary or
relax our assumptions in the calculation of σsmin

. The first option leads to reduce
the AR dictionary and the following results are poor because Matching Pursuit does
not have enough atoms to catch efficiently the structures of the image. The second
option seems more feasible, thus, we will relax the constrain and, instead of taking
the maximum σARmax we would take the first σ′

AR that accomplishes the criteria.
Hence,

σsmin
= 3σ′

AR = 3 · 2
8
3 ≈ 19, (4.28)

and, finally, σs ∈ [19, 21].

Size of the dictionary With the former assumptions, the size of the dictionary can be
calculated: 49.152 atoms for an image of 128 squared pixels.
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4.3.5 Dictionary DGa based on Gabor Atoms

In most of the previous research done on Matching Pursuit over images, most of the
decompositions have been done over dictionaries based on Gabor [40] atoms due to its
good time-frequency localization. For our purposes, the use of Gabor atoms is justified
due to the fact that they are appropriate functions to code patterns and textures.

A Gabor atom is defined as a modulated Gaussian function:

gγ(x, y) =
√

2Ke−(x2+y2)ei(ωxx+ωyy). (4.29)

But, for our purposes, we will take just the real part of gγ(x, y). Then we will apply
the rotations we will generate the necessary frequencies in the y axis:

gγ(x, y) =
√

2Ke−(x2+y2) cos(ωxx), (4.30)

where γ = (p, s, θ, ωx) defines the set of parameters in the same way we did to create
the other dictionaries. Note that we will take isotropic Gaussians instead of anisotropic
Gaussians here. The only new constrain here is the election of the frequencies ωx; we must
choose the frequencies carefully to acomplish the Nyquist criteria and set an overlap ratio
that would guaratee the density condition in the associated Hilbert space.

Then for each scaling factor σs = 2
s

NN we must calculate the set of frequencies ωxi
it

will represent. For our purpose we can define a set of constrains that will determinate
those frequencies:

Condition 1: It is clear that a determinated Gaussian will be able to represent a range
of (normalized) frequencies [ωxmin

, 1] where ωxmin
is the minimum frequency. This

minimum frequency will the determinated by the size of the Gaussian, so:

6σs > T ; ωx >
1

6σs
, (4.31)

where T is the spatial period of the atoms. We can rewrite this equation in term of
the scaling factor s:

ωx >
2− s

NN

6
. (4.32)

Also, sometimes is not so necessary to reach the lower bound due the low frequencies
would be already coded by either the Anisotropic refinement atoms or the Gaus-
sian atoms. So, it is possible to relax the lower frequency condition by appliying a
correction factor :

6σs > αT ; ωx >
α

6σs
. (4.33)

Then the corrected lower frequency is:

ωx > α
2− s

NN

6
. (4.34)

Remember that we are here working with normalized frequencies. If we want to work
with absolute frequencies we have to multiply by the sampling frequency, that is Nx

2
.



CHAPTER 4. ANALYSIS OF THE DICTIONARIES 62

Condition 2: Once we have set the range of our frequencies, we must define the step
between two represented frequencies in this set. That is the increment between two
adjacent frequencies. We could represent all the frequencies in the range [ωxmin

, 1]
incrementing by unary steps 2

Nx
. But this would be a waste of resources due that

it is not necessary because, according with the Figure 4.8, we would do too much
overlapping. We can overlap less, for example just half a Gaussian in the Fourier
domain:

∆f = 3σf . (4.35)

Or, rewritten into terms of s:
∆f = 6 · 2− s

NN . (4.36)

Also, we can control the overlap:

∆f ′ = β∆f β ∈ (1, 2]. (4.37)

Then, finally, we can generate the associated frequencies per each scaling factor s:

ωxi
(s,NN) = 1 − i∆f ′ (s,NN) (4.38)

i ∈ [0, j t.q ωxj
> ωxmin

]. (4.39)

fΒ∆

ωx

ωy

Figure 4.8: Incremental factor.

4.3.6 Our choice

The design parameters chosen for the Gabor dictionary are:

Translation We will make the same assumptions done in the previous dictionaries.
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(a) (b)

Figure 4.9: Gabor atom.

Scaling A good choice for the scaling factor for our isotropic atoms, based on empirically
results, is:

si =

[
NN · (blog2(N)c − 3)

2
, NN · (blog2(N)c − 3)

]
(4.40)

Correction parameters The adjustable parameters that defines our dictionary have
been set as:

α = 1.5 β = 1 (4.41)

Size of the dictionary With the former assumptions, the size of the dictionary can be
calculated: 44.236.800 atoms for an image of 128 squared pixels.
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Chapter 5

Results

5.1 Introduction

The standard flavor of Matching Pursuit defined in Chapter 3 reconstructs an image by
placing atoms from a redundant dictionary in order to catch the maximum of the energy
from the residual image Rnf at each iteration1.

But the problem that naturally arises is: is the decomposition given by Matching
Pursuit using these two dictionaries efficient in the sense that Anisotropic Refinement
atoms will always be destined to code edges and Gabor atoms to code textures? The
viceversa case would lead to non-efficient decompositions (i.e. code a texture formed by
squares by placing a lot of Anisotropic Refinement atoms instead of use few Gabor atoms).
To avoid these situations, our Hybrid Matching Pursuit coding scheme would include
a mechanism based on edge and texture probability masks to help the standard Matching
Pursuit algorithm to place efficiently the atoms from one or the other dictionary to code
a determinate feature. Furthermore, other schemes will be presented in order to improve
the decompositions given by the standard Matching Pursuit algorithm as the Scrambled
Matching Pursuit and the Split Matching Pursuit.

Another issue of Matching Pursuit is whether the atoms it is placing are the best ones
according to the Human Visual System (HVS), in other words, is the atom that catches
the maximum of the energy at the n-th iteration the one that better catches the structures
our eyes perceive? At this point we have to recall that our dictionary based on Anisotropic
Refinement atoms matches the responses of the early visual cortex cells [72]. Then, it
seems feasible that Matching Pursuit performs also properly in terms of the HVS. That
means that the decompositions given by Matching Pursuit should be appropriate in terms
of visual quality due to this correlation between our dictionary and the perception process.

To check the former assumption, we would design a Matching Pursuit coder that would
place more atoms where there is more visual information (such as strong edges and pat-
terns). Though, an hybrid version of Matching Pursuit aided by the information given
by the probability masks (edge or textures mask or both at the same time) would lead

1Here the name of greedy approximation

65
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to decompositions that will be more affine to how the human people perceive the images
(even if the PSNR ratio is lower). At this point, we will compare the results given by
the standard Matching Pursuit decomposition an the decompositions given by our hybrid
schemes.

Prior to any description of the the fully functional Hybrid Matching Pursuit coder
aided by probability masks, some definitions and constraints must be introduced. First
some theoretical definitions and comments about the probability masks: definition and
properties. After that, the description of the Hybrid Matching Pursuit coder will be
introduced and the other coding schemes cited above as well. Finally, some results about
the performance of these algorithms will be shown.

5.2 Probability masks theoretical description

In Chapter 2, few edge detectors were presented and the contrast based detector was chosen
for our purposes due to its property to be able to detect edges on high contrast images.
Moreover, texture detectors were introduced and Simoncelli’s one [84] was chosen for its
performance and capacity to deal with textures present in natural images. Furthermore,
Simoncelli’s texture detector is very suitable for our purposes for its natural definition
based on the human perception of textures (concretely, in the response of the V1 cells
[72]). These two detectors give an important information that will be used to define the
probability masks necessary for the design of our Hybrid MP coder. Let us define, prior to
make a formal description of the coder, some properties and definitions on the probability
masks.

5.2.1 Definition

Strictly speaking, a probability mask can be defined as a matrix

P(x, y) ∈ [0, 1] (x, y) ∈ [0, Nx − 1] × [0, Ny − 1], (5.1)

where each element (x, y) has the probability value (limited between 0 and 1) to have a
determinate feature (in our case textures or edges) at this position of the original image.
There could be many ways to define probability masks for textures or edges based on the
results given by the texture and edge detectors. Nevertheless, this definition must be done
taking into account how Matching Pursuit makes an atomic decomposition of an image in
order to have the probability masks matched with it.

In the texture case, it is easy to compute the probability mask because we can not
model how the atoms are placed by Matching Pursuit to shape a texture (recall here that
the atoms that will, mainly, represent a texture will be Gabor atoms). Hence, the texture
probability mask, let us call it PT (x, y), would be defined as

PT (x, y) = Ψ[T (x, y)], (5.2)
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where T (x, y) is the texture detector and Ψ[I(x, y)] is a linear mapping application defined
by

Ψ[I(x, y)] =
I(x, y) − min{I(x, y)}

max{I(x, y)} − min{I(x, y)} . (5.3)

In fact, the function of this mapping application is to re-scale the original image I(x, y)
into the interval [0, 1] necessary to accomplish the constrains of Eq. 5.1.

In the other case, the edge probability mask, we can not define it directly as the result
given by the contrast edge detector because when an edge is shaped by Matching Pursuit,
the center of the atoms are not placed in the position of the edge itself. Even, in the
simplest case, when an edge is modelled by two atoms, the positions of these atoms are
near the edge, but not on the edge (see Figure 5.1). So, a model for the atom placement
must be defined according to the set of parameters γ that defines an atom. With the
combination of this model and the edge detector results, we could define a probability
mask for the placement of Anisotropic Refinement atoms to shape an edge. This model
will be defined as a linear filter that will enlarge the area around an edge to cover the
positions near it, where a high probability to place an atom exists. Once this filter is
defined, we can find the edge probability mask PE(x, y) as

PE(x, y) = Ψ [E (x, y) ∗ ϕ (x, y)] , (5.4)

where ϕ(x, y) is the edge probability placement filter expressed in cartesian coordinates
and ∗ the linear convolution operator.

Figure 5.1: Edge representation by two Anisotropic Refinement atoms. When Matching
Pursuit represents an edge, assuming a simple model of two atoms, the result looks like
this. The green line represents the edge and the two red spots the center of the two atoms.
This figure shows that to shape an edge, the atoms are not on the edge itself but near it.
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5.2.2 Edge model

First to define a edge probability mask, a careful study over the behavior of Matching
Pursuit in front of an edge must be done, so, how the edge is represented by a combination
of atoms. Once, this model is set, an edge probability mask can be defined according to
it, in the sense that the areas where there is a higher probability to place an atom must
be enhanced.

To do the mathematical analysis a bit more simpler (but still valid) we will represent
an edge in its 1D version. Let us represent an edge as a discontinuity in the intensity of
an image then, its 1D version, could be modelled as a Heaviside function

I(x) =

{
Imin, if x < 0
Imax, if x > 0

. (5.5)

As discussed on Chapter 4, the edges are represented by Anisotropic Refinement atoms
hence, the 1D Anisotropic Refinement atom version is

gγ(x) =
(
4x2 − 2

)
e−x

2

, (5.6)

with its set of 1D parameters γ = (px, sx). However, it can be rewritten in a handier
expression for our purposes

g(x, sx) =

[
4

(
x

sx

)2

− 2

]
e−( x

sx
)
2

. (5.7)

Then, we have to define how to model an edge by a linear combination of AR atoms
and the simplest representation that could be done is by taking two atoms as represented
in Figure 5.2. According with this figure, the analytical form of this approximation is

Ĩ(x) = K1 · g(x+ c1, sx1) −K2 · g(x− c2, sx2), (5.8)

where c1 are c2 the center of each atom, sx1 and sx2 the scaling factors2 and K1 and
K2 the amplitude constants to shape the approximation of the edge. To define our edge
probability masks the only parameter we have to take into account is the center of the
atoms because they will determinate the area where an atom can be placed. The atoms
that best shape out edge model have its first zero crossing in the coordinates origin. If we
compute analytically this values, we find

c1 = c2 =

√
2

2
sx (5.9)

2These scaling factors, and even the center parameters and the shaping constants, must not be the
same and their values depend on several factors as the inclination uniformity of the step, its symmetry,...
In the particular case depicted in Figure 5.2 they coincide because the edge has uniform inclination. We
will assume that all our edges accomplish this property.
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I min

I

c

c2

1

max

Figure 5.2: Edge Model. The red plot depicts an edge while the greed represents the
simplest representation of an edge by taking the linear combination of two Anisotropic
Refinement atoms.

The next step is to define the area around an edge where there is a high probability
to place an atom according to our model and assumptions. This probability area will
exclusively depend on the scales of the atoms, so we can define this probability area as

δ =

[√
2

2
sxmin

,

√
2

2
sxmax

]
. (5.10)

Finally, we can define a linear filter that will take into account all this information to
refine the result given by the edge detector by placing a high probability to have an atom
in the areas around the detected edges. Let us define the edge probability placement filter
ϕ(r, θ) expressed in polar coordinates as

ϕ(r, θ) =

{
1, if r < δmax

e−( r−δmax
σ )

2

, if r > δmax

(5.11)

where σ is the roll-off parameter.
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δ

Figure 5.3: Atom placement area δ.

(a) (b) (c)

Figure 5.4: Masking process example. Figure (a) depicts the original 1D signal, (b) the
original (red) and the mask (green) and (c) the original (green) and the masked signal
(red). Observe how the areas around the discontinuities (edges of the image) have been
preserved due to the high probability to place atom.

5.2.3 Mutual masks

Once the models for the two types of masks are defined a further refinement could be done:
use the information of one mask to accurate the other. In our particular case of edge and
texture masks, if there is an area with a high probability to be a texture, this should be
taken into account into the edge mask and decrease the probability of edge in that area.
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Figure 5.5: Edge model.

With this method, a better probability exclusion over the two masks is achieved. Hence,
the final masks would be defined as:

PE(x, y) = Ψ [E (x, y) ∗ ϕ (x, y)] − γ1 · Ψ[T (x, y)] (5.12)

PT (x, y) = Ψ[T (x, y)] − γ2 · Ψ [E (x, y) ∗ ϕ (x, y)] , (5.13)

with the mutual influence parameters {γ1, γ2} ∈ [0, 1] and we will assume γ1 = γ2 to
achieve an equal mutual influence. Empirically, the results obtained were good for ranges
of γ ∈ [0.3, 0.5].
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−γ−γ

Texture MaskEdge Mask

Normal

Mutual

Figure 5.6: Mutual masks definition.



CHAPTER 5. RESULTS 73

5.3 Hybrid Coder description

5.3.1 Introduction

Once we have defined a model for the probability masks a general Hybrid Matching Pursuit
coder can be defined as depicted in Figure 5.7. Then the question is: why do we use
probability masks? The aim of this coder is to obtain a decomposition of the target image
in the same way Matching Pursuit standard algorithm does but enhancing the areas with
more visual information. Actually, this idea is not new: use masks to enhance areas in the
target image when the coding is performed has been already used in [10]. It is true that
the standard Matching Pursuit does not take into account where are the most meaningful
areas of the image. Thus, our probability masks enhance those areas where are more visual
information: edges and textures. It is also true that this decomposition will not give better
PSNR results in comparison with the standard Matching Pursuit but, in some cases, will
achieve better visual quality (according with some subjective tests).

Here there are commented in detail the operation steps of the coder:

• A Full Search Matching Pursuit is done at the n-th iteration by taking the residual
image (the original after subtracting the previously selected atoms).

• Once we have performed the convolution in the frequency domain, matrix A corre-
sponding to all the scalar products of an atom (with all its displacements all over the
image) is obtained. Then, the standard Matching Pursuit algorithm would choose
the atom that presents the largest scalar product. Instead of that, a decision matrix
A′ is computed as:

A′ = A � P (5.14)

where � is the term-by-term product operator and P is a probability mask. That
means that each position of the atom is pondered by the probability to have this
feature in this point. The election of which probability mask P is used depends on
the atom evaluated: edge probability mask if it is an Anisotropic Refinement atom
or texture probability mask if it is a Gabor atom. Then the election of the strongest
atoms is taken from A′, but the reconstruction and updating of the residual part is
done with the original scalar product to keep energy conservation.

• An optional step in our coder would be to update the probability masks with the
data of the atom chosen. In further sections, this point will be analyzed thoroughly
and few results shown.

• Finally, the last step consist into the quantization and codification of the Matching
Pursuit stream (that is the coefficients obtained for each atom cn and the intrinsic
parameters of the atom γn).

The decoding operation is extremely simple (a good feature for a decoder, indeed):
generate the atoms and place them in its position.
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5.3.2 Mask control α: Waterfilling

In the previous section, the description of both probability masks for textures (shaped by
Gabor atoms) and edges (shaped by Anisotropic Refinement atoms) have been introduced.
Once arrived to this point, we have to introduce a new parameter to the description of our
hybrid coder: the possibility to control how much influence these masks will have in our
Matching Pursuit algorithm.

1

0

(a)

1

0

α1

(b)

α 2

1

0

(c)

Figure 5.8: Waterfilling. The α parameter allows to control the influence of the masks into
the ponderation process. In (a), the original a 1D-Mask. In (b), its waterfilled result with
a high value of α and, in (c), with a lower value. Note that in (c) begins to appear a weak
probability region (lower peak).

If we recall Chapter 3, Matching Pursuit decomposition is performed by using the full-
search algorithm in the frequency domain. According with this full-search scheme, the
largest scalar product is chosen after apply the IFFT to obtain the final scalar product
matrix corresponding to all the scalar products of an atom displaced around all the spatial
positions. At this point is where the probability masks is applied to ponder the scalar
products obtained for each position. Once all the largest ponderated scalar product is
computed for each, the maximum of all them is selected and the corresponding atom is
chosen. If the masks (either edges or textures) are applied directly, the obtained results
are extremely poor (in both terms of PSNR or HVS). For example, one of the drawbacks
of the ponderation by probability masks is that in the places where it reaches a zero level,
the scalar product will be also zero and there will never be placed any atom. All types of
probability masks are bounded into the interval [0, 1] due to the Ψ[I(x, y)] operator but
this wide range introduces these insidious effects on the whole system hence, a control over
the effect of the masks must be introduced.

The ponderation effect, so, how enhanced are certain areas of the scalar product matrix
A, is determined mainly by the value range of the probability mask (by definition, the
probability masks PE(x, y) and PT (x, y) ranges into [0, 1]). Let us call α to the lower
bound of a probability mask P :

α = min{P}. (5.15)

Then, the influence of the probability mask on the scalar product matrix A′ defined
by Eq.5.14 will decrease as α → 1. It happens due to that the poderation is done over an
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interval of size 1−α, hence the effects of the ponderation will be more noticeable as wider
this interval will be. But the problem is: how can be the a probability mask bounded in the
interval [α, 1]? The mask should be bounded in such way that the wider the interval, the
lighter the influence of the mask. A good strategy would be to use a waterfilling technique.
That is to generate the ponderation mask in the following way:

Pα(x, y) =

{
P(x, y), if P(x, y) > α
α, otherwise

. (5.16)

The procedure to create a probability mask is shown in the Figure 5.8. With this
technique two objectives are achieved: to control the influence of the masks to avoid over-
ponderation and to enhance gradually the influence areas as α increases. When α take
a high value (so the ponderation range is small) only the areas with a high probability
are emphasized over the whole mask (subfigure (b) of Figure 5.8). As alpha decreases,
the other areas with a smaller value appear and are taken into account to perform the
ponderation (subfigure (c) of Figure 5.8).

Finally, it must be remarked that the election of the value of α is chosen empirically.
As we will comment in the conclusions, the use of probability masks when performing
a Matching Pursuit decomposition is an ill-posed problem. The results are extremely
depending on the image itself, hence to make an analytic study is too complicated.

5.3.3 Masks updating

An issue that we tried to embed in our Hybrid Matching Pursuit coder was the possibility
to update the probability masks. It was done in order to take into account the information
that was extracted with the subtraction of an atom at the n-th iteration. Actually, it is a
good idea because when the algorithm has taken out few atoms, the masks that are applied
are still the ones computed for the original image. Two techniques were proposed for the
edge detector: to subtract a pondered version of the atom’s envelope to the masks or to
design a linear edge estimator (basically the Sobel edge detector over a smoothed version
of the original image) and update it accordingly. Both proposals were tested and, despite
it seemed to be a logical assumption to update the masks, the results were, though, poor.
Nevertheless, the update based on the linear edge estimator performed a bit better and
the updated version of the probability mask (for edges) looked curious (see Figure 5.9).
See also Future Work Section.

5.3.4 Quantification and Codifications

The Matching Pursuit output consists of:

• The dictionary to whom the atom belongs: DAR, DG or DGa (Anisotropic Refinement,
Gaussian or Gabor atoms respectively).
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Figure 5.9: Updated edge probability mask for LENA image.

• The set of parameters that defines the shape of the atom γn. Note that this pa-
rameters (position, orientation, scale(s), frequency (in the case of Gabor)) are all
integer.

• The coefficient cn of each atom. Note that in this case the coefficient is a real value.

Then, the only parameter that needs to be quantified is the coefficient cn [31]. Regarding
the quantification matter, many techniques have been purposed: uniform quantization [31],
death zone quantization [69],... But the one with best performance is described in [37]: it
takes advantage of the exponential decay of the coefficients and optimizes the quantization.
This scheme consists on a posteriori non-uniform quantization, that means that the encoder
does not use the quantized coefficients to update the residual3. The a posteriori scheme is
practical for asymmetric systems: the Matching Pursuit stream is computed once and the
quantized several times to satisfy different rate constraints.

Just few words about this scheme (for a detailed description on the quantizer, check
[37]). The coefficient energy decreases with the iteration number and it can be upper-
bounded by an exponential decay curve (see Figure 5.10) which only depends on the prop-
erties of the dictionary and the search algorithm

|cn| ≤
(
1 − α2β2

)n
2 ‖f‖, (5.17)

where β is a redundancy factor and α ∈ (0, 1] represents an optimally factor. Actually,
α depends on the algorithm that, at each iteration, searches for the best atom in the
dictionary; it is set to one when MP browses the complete dictionary at each iteration.
The redundancy factor β depends on the dictionary construction4. These two factors are
used to design the quantization scheme.

Let nj be the number of quantization levels for the jth coefficient. The Exponential

Upper-bounded Quantizator (EUQ) assigns nj+1 = (1 − α2β2)
1
2nj levels to the next coef-

ficient (j + 1)th. Bits are optimally distributed between successive coefficients accordingly

3The schemes that quantizes each coefficient while performing the decomposition in order to update
the residual are called in-loop quantizator [60].

4Actually, β can be proportional to the coherence µ of the dictionary defined in Chapter
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to their relative contribution to the signal representation.The quantization range and the
number of quantization step are therefore reduced along the iteration number.

Figure 5.10: Coefficients norm upper-bounded with the exponential decay curve (1−α2β2)
1
2

with α = 1 and β = 0.1.

Finally, for the last step of the Matching Pursuit compression scheme, we use a classical
arithmetic code. Arithmetic encoding [94] avoids the integral bit constraint of a Huffman
code by coding together a sequence of symbols. Such a sequence is represented as an
interval included in [0, 1]. The longer the sequence is, the smaller is the interval and the
larger is the number of bits to specify the interval. The resulting bit rate is very close to
the entropy and is generally better than with the Huffman coder.

Arithmetic coding works by using a probability interval defined with variables L and
R, which are initially set to 0 and 1 respectively. The value of L represents the smallest
binary value consistent with a code representing the symbols processed so far. The value of
R represents the product of the probabilities of those symbols. To encode the next symbol,
which is the jth of the alphabet, both L and R must be recomputed as:

L = L+R

j−1∑

i=1

pi (5.18)

R = Rpj−1. (5.19)

This preserves the relationship between L, R and the symbols that have been previ-
ously processed. At the end of the message, any binary value between L and L + R will
unambiguously specify the input message. The interval will continue to be redefined until
and end-of-sequence marker is coded. An example of a coding sequence can be found in
Figure 5.11; it details the coding of the sequence of symbols IUI where each symbol has a
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predefined probability. The top line is a scale. Each succeeding line represents a stage of
the coding process. The first stage is the initial stage [0, 1), which is followed by succeeding
intervals. At each stage the current interval is the shaded rectangle. The value of L is the
left hand side of the interval and the value of R is the length of the interval.

Figure 5.11: Arithmetic coding of the sequence IUI.

5.3.5 Hybrid Matching Pursuit coder aided by probability masks:
Results

In this section some results are presented. First, the those related with the Matching
Pursuit decomposition with one dictionary (AR atoms one) aided with an edge probability
mask. Secondly, the results for the decomposition over the two dictionaries with both
probability masks for edges and textures.

In relation with the quantification and coding of the resulting images, a deep study has
been already done. These studies ([31],[37]) have exploited the characteristics (coefficients,
atoms,...) of the Matching Pursuit coding algorithm and their results have been applied
to design both the quantifier and the Arithmetic coder. Hence, in this study, comparative
results on the coding are shown to have an idea the performance in terms of bit rate of
each algorithm.

Single dictionary probability mask aided Matching Pursuit

It has been said that the purpose to use probability masks was to aid the standard Matching
Pursuit algorithm to code a determinate feature of the image with a certain type of atom.
That is, to coordinate the use of these two dictionaries and, although, enhance the areas
with more visual information. But we can also try to apply a single mask when coding an
image with one dictionary. It has been shown that the use of probability masks never would
lead to achieve better PSNR results but enhance the areas with more visual information
(the main edges). The results shown in Figure 5.12 are those obtained when coding an
image with a dictionary based on Anisotropic Refinement atoms using MP aided by a
contour probability mask.
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It can be said for all the images tested that the bit rate presented by the standard
Matching Pursuit and the Hybrid Matching Pursuit decompositions are very close (±0.005
bpp for various levels of quantization). This result is quite logical in the way that we use
the same number of atoms, the same dictionaries and the coefficients follow approximately
the same exponential decaying rule (see Figure 5.13). So, the statistics of the parameters
do not change enough for the arithmetic encoder in order to take advantage of its statistical
properties.

Finally, we have to add that the results here depicts the cases when the algorithm
performs properly. As the results strongly depends on the masks (and they depends on the
original image), in some cases, the codification does not give better results (both in terms
of PSNR and visual quality).

(a) (b) (c)

Figure 5.12: Hybrid Matching Pursuit with contour probability mask: results over LENA
(128 × 128). From left to right: (a) Contour probability mask with α = 0.7, (b) LENA
coded with standard Matching Pursuit with 250 atoms and (c) LENA coded with hybrid
Matching Pursuit. Results are showed in the table below.

PSNR Bit rate for 256 levels Poll for visual quality
MP 28.6151 dB 0.5512 bpp 16.66%

Hybrid MP 25.4818 dB 0.5503 bpp 83.33%

Multiple dictionary probability mask aided Matching Pursuit

The case of a Matching Pursuit decomposition over multiple dictionaries is a bit more
complicated than the scheme presented in the former section. In this case, the use of
probability masks is more justified recalling the fact that the Anisotropic Refinement atoms
are more suitable to code edges and Gabor atoms to code textures. As these atoms have
a very determinate function we have two options: to regard the placement of the atoms of
each dictionary to the Matching Pursuit algorithm or aid it with the probability masks.
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(a)

(b)

Figure 5.13: Energy of the coefficients in the standard Matching Pursuit and the Hybrid
Matching Pursuit coders. In figure (a), coefficient’s energy in the single dictionary de-
composition and, in figure (b), multiple dictionary decomposition. Both follow a similar
exponential decay that allows to apply the a posteriori exponential quantizer.

With this technique, situations like to try to code a texture by using Anisotropic Refinement
atoms or code an edge by using Gabor atoms would be avoided. Also, the areas with more
visual information (both contours and textures) will be enhanced.
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(a) (b)

(c) (d)

Figure 5.14: Hybrid Matching Pursuit with contour and texture probability masks: results
over BABOON (128×128). In figures (a) and (b), the contour mask and the texture mask
with α = 0.6 and γ = 0.3 respectively. Figure (c) and (d) depicts 200 atoms reconstruction
for the standard Matching Pursuit and the Hybrid Matching Pursuit respectively.

PSNR Bit rate for 256 levels Poll for visual quality
MP 25.95 dB 0.4942 bpp 25%

Hybrid MP 22.34 dB 0.4893 bpp 75%

Regarding with the codification matter, the same assumptions of the former results are
applicable to this example. The exponential decay of the coefficients follows a similar rule
to the standard Matching Pursuit, hence the results are extremely close.

Finally, we have to add again that the results vary among the different test images. For
some, the hybrid algorithm performs better (always speaking in terms of visual quality)
and in some, it does not (see Figure 5.15). We will comment this effect in the conclusions
chapter.
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(a) (b)

Figure 5.15: Hybrid Matching Pursuit coder, example of under-performance. Figure (a)
depicts LENA coded with MP and 200 atoms (under the same conditions as Figure 5.14).
Figure (b) the codification with 200 atoms with Hybrid-MP. Clearly, image (a) has better
visual quality than (b).



CHAPTER 5. RESULTS 84

5.4 Scrambled Matching Pursuit

5.4.1 Introduction

A new idea arose while developing this thesis: Matching Pursuit gives a good sparse
approximation of an image but not always this approximation choose the atoms that are
more suitable in terms of HVS perception. A solution to this problem would be to take
the set of atoms given by the Matching Pursuit algorithm and reorder (scramble) them to
achieve a reconstruction more adequate to our perception. To reorder the coefficients two
criteria have been tested:

1. MPQM maximization: By choosing the atom that gives the best MPQM at each iter-
ation. As discussed in previous sections, the MPQM maximization at each iteration
does not lead to a global maximization of the MPQM metric. In this case, trying
to reorder the atoms using this criteria gives a poor reconstruction (even in terms of
visual quality), so this method was dismissed.

2. Probability masks : It has been shown that computing a Matching Pursuit decompo-
sition aided by probability masks over a dictionary based on AR atoms gives inter-
esting results in the way our image is decomposed taken into account the strongest
edges (hence, where more visual information is located). In the same way, the coeffi-
cients that have been found by an standard Matching Pursuit decomposition might
be reordered in order to empathize these strong edges. This procedure could be
extended to deal with double dictionaries (i.e. Gabor atoms and Anisotropic Refine-
ment atoms).

MATCHING
PURSUIT

DICTIONARY

Ordered set
of atoms

Quantizer +
Coder

Decomposition:
Set of atoms gγn
0<n<1000

Edge mask

Texture mask

SCRAMBLER

11011000101

Figure 5.16: Scrambled Matching Pursuit coder.
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5.4.2 Scrambled Matching Pursuit coder

Scrambled Matching Pursuit coder depicted in Figure 5.16 works as follows: first, the
standard Matching Pursuit algorithm is computed and then the coefficients are reordered
taking into account our probability masks that model and enhance the areas with more
HVS information

One of the properties of Matching Pursuit is that gives an exponential decay of the
coefficients and its quantification can be efficiently coded [37]. With our scrambling tech-
nique, this strictly exponential decay has been lost, as depicted in the Figure 5.17. Hence
another quantization scheme must be found and [69] brings us a suitable tool to solve this
matter: the death zone quantization. This quantizer basically works out as follows: first,
the atom with smallest scalar product is chosen and its value is subtracted to the rest of
the atoms. This is done in order to reduce the range and spend more bits to code the area
of interest. Once this operation is performed, the resulting atoms are uniformly quantized.

Figure 5.17: Scrambled Matching Pursuit coefficients’ energy. The exponential decay of
the coefficients achieved by the standard Matching Pursuit has been lost.

5.4.3 Results

The results regarding the effectiveness of this coder are showed in Figures 5.18, 5.19 and
5.20. The performance of this coder is based on the placement of atoms in the areas where
more visual information is regarded and the results are positive. In fact, despite in all
the cases, the PSNR ratio is lower than the one achieved by standard Matching Pursuit,
the images reconstructed with Scrambled Matching Pursuit look more adequate for the
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spectator. The results obtained over few test images show that in most of the cases people
prefer the reconstruction built with this method.

If we focus on the results regarding the visual quality of the images, it would not be
a fair comparison. Although the results are promising in terms of how ”nice” look the
images, we have to compare in terms of bit rate. Here is the main drawback: Scrambled
Matching Pursuit does not take advantage of the optimized quantizer used by the standard
Matching Pursuit. Nevertheless, for similar bit rates this new method achieves not so bad
results, as showed in Figure 5.21.

(a) (b)

Figure 5.18: Scrambled Matching Pursuit results. Figure (a) is the reconstruction of LENA
image with 450 atoms given by the standard flavor of Matching Pursuit and figure (b) is
the Scrambled Matching Pursuit reconstruction with the same number of atoms. Results:

PSNR Poll for visual quality
MP 31.4 dB 33.3%

Scrambled MP 28.62 dB 66.6%
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(a) (b)

Figure 5.19: Detail of Figure 5.18. The Scrambled version of Matching Pursuit leads to
better visual results despite its lower PSNR ratio (compare the stripes of the hat and the
texture of the fences).

(a) (b)

Figure 5.20: Scrambled Matching Pursuit results. Figure (a) is the reconstruction of
BABOON with 100 atoms given by the standard Matching Pursuit and figure (b) is the
Scrambled Matching Pursuit reconstruction with the same number of atoms. Results:

PSNR Poll for visual quality
MP 21.91 dB 8.3%

Scrambled MP 20.01 dB 91.6%
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Bitrate Levels Atoms PSNR PSNR (after Quantizing)
MP 0.9580 bpp 256 450 31.44 dB 29.01 dB

Scrambled MP (I) 0.9581 bpp 35 450 28.62 dB 21.18 dB
Scrambled MP (II) 0.9577 bpp 256 438 28.62 dB 27.05 dB

Figure 5.21: Comparative bit rate results for Scrambled Matching Pursuit. First row shows
the results for the standard Matching Pursuit whereas second and third rows show the
results for Scrambled Matching Pursuit with similar bit rates. Particularly, in the second
row there are the results to achieve the same bit rate with the same number of atoms that
leads to a have too less quantification levels. Finally, in the third row, the results with the
same number of quantification levels but the number of atoms must decrease.
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5.5 Split Matching Pursuit

5.5.1 Introduction

One of the main disadvantages of Matching Pursuit is the heavy computational load it
demands to perform a decomposition. Moreover, another drawback is the fact that the
dictionaries used to perform the decomposition are designed for the entire image. Imagine,
a very hypothetic case, where our target image has the following characteristics: in a
determinate area there are only edges and in an other area (not overlapped with the former)
there are only textures. Thus, we could take advantage of this property and perform the
Matching Pursuit decomposition just only with one of the dictionaries instead of both on
each area.

With this idea, a new flavor of Matching Pursuit decomposition can be designed. Let
I be a target image with Ik|N−1

k=0 non-overlapped areas. Hence:

I =
N−1⋃

k=0

Ik. (5.20)

Then, if we assume that each area has just one determinate feature (edges or textures),
a coarse approximation would be to perform a Matching Pursuit decomposition over each
Ik with a local dictionary. This local dictionary would be, in a first approach, an AR or
Gabor Dictionary. Thus, Matching Pursuit can be performed over each area separately
and after merge all the areas together to generate a Ĩ approximation of the original image.
This introductory approach to Split Matching Pursuit is very coarse in the sense that we
do not pay attention to block artifacts introduced by the splitting process or any other
effect. Despite this, if we just pay attention to the computation of the decomposition,
this new algorithm reduces significantly the necessary operations. According to the Figure
5.22, we can calculate the number of operations (by using the FFT-MP optimization) to
compute one atom for each method. Take in consideration a squared image of 128 pixels
and a division in two identical halves for the Splitted Matching Pursuit:

Operations for MP ; ∝ N2
x · NAR(Nx ×Nx) = 53.673.984 operations

Operations for SMP ; ∝ 2 · Nx

2
Nx · NAR(Nx × Nx

2
) = 32.440.320 operations

where NAR(Nx, Ny) gives the size of an AR dictionary designed for an area of Nx×Ny

pixels. According to this, the overall computation has been reduced.
Another advantage of this coding scheme is the possibility that, with the same bitrate

used to code an image with the standard flavor of Matching Pursuit, we can achieve better
performance. Relying on the fact that the local dictionaries are much more smaller that
the original dictionary, strategies would be roughly defined as follows:

• To enlarge the local dictionaries to approximately reach the same number of functions
of the dictionary used by standard Matching Pursuit. The criteria to make this
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(a) (b)

Figure 5.22: Number of atoms for each dictionary in relation with the size of the image.
In figure (a), NAR dictionary size for a squared image of Nx pixels. In figure (b), NGabor

dictionary size for a squared image of Nx pixels.

enlargement would be to add more orientations or scales, for instance. With this
procedure, using approximately the same bitrate, we would catch more efficiently
the structures of each partition.

• Instead of enlarging the local dictionaries we could place more atoms per region, with
the same bitrate. This strategy also leads to better performance of the algorithm.

5.5.2 Split Matching Pursuit coder

Let us formalize the procedure to perform the Splitted Matching Pursuit according with
the description of Figure 5.23:

Partition The first step is to define a set of N non-overlapped areas from the original
image with homogeneous properties into them. The homogeneity criteria would be:
whether there is a high density of edges or a high density of textures or patterns or
there are both. The correct election of a segmentation algorithm that can define a
partition of the image with such criteria will be the key to achieve a good performance
of the decomposition. Various segmentation schemes have been tested during the
pursuing of this work but none has showed a good performance. Instead of that, a
by-hand segmentation has been done. See Future Work section.

Transition area In order to avoid the artifacts introduced by the splitting of the original
image, a transition area is defined. This area will enlarge the borders of the partitions,
overlapping between them. Let us call ξ the transition width around a partition.
Once this factor is set, the enlarged partitions Iξk |N−1

k=0 will be our operational units. So,
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our Matching Pursuit decomposition will be performed over the enlarged partitions
instead of the original ones. Finally, this transition area is added in order to smooth
the junctions between adjacent partitions when the reconstruction takes place.

Dictionary definition Once we have set the partitions of the image, we can extract
information about them in order to define a local dictionary Dk as matched as possible
with the structures present in the image. Here there would be many methods to define
such dictionaries but, to make a simple analysis, let us define these dictionaries in
the same way we defined the whole dictionary. The dictionaries can be enlarged by
adding more orientations or scales, depending on the bitrate we would like to have. At
this point, we have to recall that our dictionaries are defined over rectangular areas,
so the partitions must be defined accordingly. The improvement achieved is that the
local dictionaries size is drastically reduced, hence the speed-up of the algorithm.

Matching Pursuit Matching Pursuit decomposition is performed over the N partitions
with their respective local dictionaries Dk. When performing the Matching Pursuit,
we have to decide how many atoms will be computed per each area k. If we want
to compute M atoms for the whole image, an equitable method would be to divide
them in function of the pixels each area has:

Atomsk =
M

NxNy

· Area(Ik) + Extra atoms (bitrate), (5.21)

where Nx and Ny are the dimensions of the original image. The extra atoms noted
above refer to the atoms we can add to reach the same bitrate achieved by the
standard Matching Pursuit. Note that we compute the number of atoms of each area
in function of Ik instead of Iξk . For future manipulations, let us call gkγn

the set of
atoms obtained after the Matching Pursuit decomposition for the partition k.

Coefficients adjusting When the set of coefficients gkγn
for all the partitions have been

obtained we have to create a global description of all the sets. That is to merge the
k sets of coefficients to build an unique set Gγn

. Each partition, when performing
Matching Pursuit, have its own coordinates reference, hence the global reference with
the original image coordinates origin has been lost. To adjust all the k sets to unify
the origin, we have just to add the convenient offsets to the positions of the atoms of
each section in reference with the original image. It has been tested that by coding
all the coefficients together is more efficient that coding them separately.

Quantification Once Gγn
is built we perform the quantification. It has been already

shown in the former section that Scrambled Matching Pursuit had the drawback that
the coefficients do not follow the exponential decay, hence the efficient exponential
a posteriori quantization can not be applied. The question that arises is: does Split
Matching Pursuit follow the exponential decay, once the atom’s coefficients have been
gathered in Gγn

? As depicted in Figure 5.24, they do. Hence the quantification can
be performed efficiently as done in the standard Matching Pursuit coder.
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Figure 5.24: Coefficient’s energy decay for Split Matching Pursuit. As showed below the
energy follows a quasi-exponential rule. Hence the a posteriori quantification perform
properly.

Codification The stream that will be sent must contain the quantized coefficients, the
parameters of the atoms γ but, in this particular scheme, a description about the
partitions (necessary to perform the reconstruction), the overlapping area ξ and the
baseband as well.

Reconstruction The reconstruction of a Split Matching Pursuit algorithm is not direct
as happened with standard Matching Pursuit. This is because the partitions are
overlapped and in the areas where the partitions overlap there would be more energy.
Hence, a way to perform the reconstruction would be as:

Ĩ =
N−1⋃

k=0

Ĩξk −
N−1⋂

k=0

N−1⋂

l=0


Ĩξk , Ĩξl︸ ︷︷ ︸

k 6=l


+ Υ



N−1⋂

k=0

N−1⋂

l=0


Ĩξk , Ĩξl︸ ︷︷ ︸

k 6=l





 , (5.22)

where Υ(·) ∈ C1 is a smoothing function. In fact, the utility of this equation is to
smooth the overlapped areas in order to avoid the block artifacts and restore the
energy. In our particular case, a first-order polynomial function has been chosen.

5.5.3 Results

The results concerning the performance of Split Matching Pursuit are shown in two figures:
5.25 and 5.26. These figures, will illustrate the behavior and performance of the scheme.

From Figure 5.25 we can comment some remarkable facts:
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• When applying standard Matching Pursuit over regions with very differentiate fea-
tured regions, the visual quality is far from the best (see figure (c)). 100 atoms have
been placed in all the image.

• In subfigure (d), Matching Pursuit has been applied independently over each region
and after they have been merged (50 atoms at each region). Visually, the results
improve significantly (see how better the fingerprint been represented has). But the
election to place two dictionaries lead to ringing effects into the contour area (due to
the Gabor atoms). Hence, the suitability to use local dictionaries.

• In subfigure (e), a Gabor dictionary has been used to code the fingerprint and an AR
dictionary to code the lines. The ringing effects in the lines have disappeared and
the total visual quality has improved significantly.

About this example, some data can be computed:

Algorithm PSNR Bit rate Bit rate Bit rate Time
Levels=64 Levels=128 Levels=512 Consumed

Standard MP 20.86 dB 0.2227 bpp 0.229 bpp 0.2529 bpp 35 mins.
Split MP 20.43 dB 0.2251 bpp 0.2344 bpp 0.2573 bpp 15 mins.

(2 dictionaries)
Split MP 20.26 dB 0.2173 bpp 0.226 bpp 0.2485 bpp 6 mins.

(local dictionaries)

As we can see, the comparison leads to the following points:

• The PSNR ratio is very close in all cases. For more test images it has been shown
that it behaves alike this in most of the cases (taking into account that we will have
better results as better is our segmentation).

• The time demanded, to achieve these close PSNR ratios, is quite different. With
Split Matching Pursuit driven by local dictionaries the time has been reduced almost
80% in comparison with the Standard Matching Pursuit.

• The bit rate achieved by Split Matching Pursuit with local dictionaries is always
smaller than the bit rate demanded by Standard Matching Pursuit (even taking into
account that the header of Split Matching Pursuit is bigger due to the code of the
partition’s description). The reason is because the smaller dictionaries we use the
smaller will be the coding range. This leads to smaller bit rates for our Split Matching
Pursuit decompositions.
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(a) (b)

(c) (d) (e)

Figure 5.25: First example of Split Matching Pursuit. In figures (a) and (b) are depicted the
original image and its splitting mask respectively. Note that the image has two differentiate
areas: the left with the fingerpring (textures) and the right with the lines (contours).
Figure (c) is the standard Matching Pursuit (applied over all the image), figure (d) the
Split Matching Pursuit is applied with both dictionaries over each partition and figure (e)
is the Split Matching Pursuit applied with local dictionaries over each region. Every image
has placed 100 atoms.
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In figure 5.26 there is shown the performance of Split Matching Pursuit for a more
natural image. The results obtained for the decompositions were similar to the obtained
for the previous example:

Algorithm PSNR Bit rate (R) Time
Levels=256 Consumed

Standard MP 25.01 dB 0.2515 bpp 35 mins.
Split MP 23.97 dB 0.2380 bpp 7 mins.

(local dictionaries)

With this figure, we give an example of how to add more atoms to the Split Matching
Pursuit decomposition to achieve the same bit rate as standard Matching Pursuit. It has
been shown that Split Matching Pursuit leads to lower bit rates than the standard method,
hence, we can calculate this excess as:

∆R = 0.2515 − 0.2380 = 0.0135 bpp (5.23)

Then, to find how atoms we can add more to the Split decomposition, we would calculate
the bit rate per pixel:

RSplit

Num.atoms
=

0.238

100
= 0, 00238 bpp/atom (5.24)

Finally, we can calculate the extra atoms by:

∆R

0, 00238
≈ 6 (5.25)

By adding these 6 more atoms, the Split Matching Pursuit decomposition (with the same
bit rate as the Matching Pursuit one) achieves a PSNR of 24.13 dB.
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(a) (b)

(c) (d) (e)

Figure 5.26: Second example of Split Matching Pursuit. In figures (a) and (b) are depicted
the original image and its splitting mask respectively. In figure (c), Matching Pursuit
decomposition with 100 atoms; figure (d), Split Matching Pursuit decomposition with 100
atoms; figure (e), Split Matching Pursuit decomposition with 106 atoms
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Conclusions and Future work

6.1 Achievements

We did already know that Matching Pursuit was an efficient approach to very low bit
rate coding of images. But the original algorithm does not take into account the visual
information contained in the images. Hence, the algorithm has been modified to include
this issue into the coding process by introducing two probability masks that will ”help” the
standard Matching Pursuit algorithm to place more atoms in the areas of interest (where
there are strong edges and textures). With this idea, three new coding schemes have been
proposed:

Hybrid Matching Pursuit that ponders the scalar products of the atoms in order to
enhance the areas with more visual information.

Scrambled Matching Pursuit that takes the original stream given by a Matching Pur-
suit decomposition and scrambles it in order to place the atoms that regard more
visual information.

Split Matching Pursuit is another version of Matching Pursuit that performs the de-
composition in blocks. The advantage of this scheme is that achieves a similar per-
formance (in PSNR terms) than the standard Matching Pursuit but takes around
60-80% time less.

6.1.1 Conclusions

Matching Pursuit vs Hybrid Matching Pursuit

It can be demonstrated that we will never achieve better PSNR results with this Hybrid
Matching Pursuit than with the standard Matching Pursuit. But in some cases, the de-
compositions given by this new scheme leads to representations that look nicer for the
observer due to the enhancement of the areas with most of visual information. But it does
not happen always. The main problem is that this problem is ill-posed. Due to the heavy

98
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dependence on the definition of the probability masks with the original image, the results
may vary from one case to another. Furthermore, there is the problem of adjusting a set
of parameters (the mutual mask influence γ, the waterfilling parameter α,...) that controls
the behavior of the algorithm. There is no analytic method to set this parameters so, for
each image, the optimal values are different. Hence, if there would be a reliable method
to find the optimal parameters, this scheme would perform visually better decompositions
than standard Matching Pursuit.

Moreover, we have to add that the results already given by the standard Matching
Pursuit are also good in terms of visual quality. That means that despite it does not take
into account the more meaningful areas of the image, the decompositions are visually nice.
The reason relies into the fact that the dictionary used (the one based on Anisotropic
Refinement atoms) has a similar response than the early cortex visual cells, hence there
exists a high correlation between the decomposition and how the images are perceived by
our eyes.

A few words may be added about scalability. Matching Pursuit has been found as a
good choice in terms of scalability [38]. This new scheme also shares this property in the
sense that they have a similar statistical behavior (that would affect the quantization) and
properties.

Matching Pursuit vs Scrambled Matching Pursuit

This new scheme seems to be a good choice when we want to design a bit stream that
leads to reconstructions that increase the visual quality proportionally to the number of
atoms. The idea of scrambling the atoms (controlled by the probability masks) leads to a
reconstruction that achieves better visual quality proportionally to the number of atoms
and has the advantage of not introducing an extra heavy load into the coding process. The
results seem promising because there is a significant improvement of the visual quality in
relation with the standard decompositions. It would be interesting when designing image
receptors (for example in a cell phone) to have a reconstruction in such a way.

The disadvantage of this scheme is the lost of the exponential decay of the coefficients
when reordering them. Hence, the efficient exponential adaptive quantization can not
be performed and the bit rate increases a bit. However, quantization with death-zone
technique give also good results and this Scrambled Matching Pursuit becomes a reliable
strategy when coding image at very low bit-rate focusing on a ”visually scaled” bitstream.

Matching Pursuit vs Split Matching Pursuit

When performing Matching Pursuit decompositions, the heavy computational load leads
to wait a long time. Hence, improvements to reduce the computational load must be done.
This technique by splitting the image in sub-images1 and performing the Matching Pursuit
decomposition over each sub-image, the computing time is reduced around 60-80%. Then,

1This technique has been already used in video coding with Matching Pursuit by [3]
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this technique can be a solution to implement reliable Matching Pursuit coders in a near
future.

Other advantages can be cited. The decay of the coefficients continues followinging an
exponential rule, hence the efficient a posteriori quantization can be done. Furthermore,
as the area where Matching Pursuit is computed has been reduced, the dictionaries are
also reduced. This implies that our coding range is smaller, hence there is a reduction on
the overall bit rate.

In terms of visual quality, there is an improvement. Once we have split the original
image, the sub-images are coded with dictionaries created in the same way they are created
for the whole image. These local dictionaries are smaller than the global ones, hence we
can enlarge them by adding scales or rotations to catch better the structures presents in
the sub-image.

Two drawbacks have been found in this new coder. The first is the splitting process:
there must be an efficient segmentation algorithm to split the image and decide which
dictionaries must be place at each segment. That is not easy and we could not find a
good method to perform this segmentation. Hence, there is still a hole to fill... The other
drawback is the increase of the complexity of the receptor. When the receptor decodes an
image coded with this scheme, it must built the partitions in order to apply the smoothing
functions at the edges. This implies a bit more of complexity than the decoder for Matching
Pursuit coded images.

6.2 Future work

Sparse approximation of functions is a science field that has been studied thoroughly during
the last years but there is still a lot of unexplored possibilities.

• Many parameters are involved into the definition of these Matching Pursuit proposed
in this thesis: the mutual mask influence γ, the waterfilling parameter α,... It would
be interesting to find a reliable method to assign values to these parameters.

• Study more thoroughly the behavior of the Babel function. Concretely, study for
different types of dictionaries the behavior of

∂µ1(m)

∂m
. (6.1)

Also, would be interesting to check if there is any concrete value for

lim
m→∞

∂µ1(m)

∂m
, (6.2)

and if it has any relevance. With this knowledge we could try to design dictionaries
that would fulfill some properties with the Babel function.
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• It could be interesting to find other methods to define the probability masks. In
this thesis, the edge probability mask PE(x, y) was based on the combination of an
edge detector (based on contrast measures) and a model describing the behavior
of Matching Pursuit to shape an edge. In the other hand, the texture probability
mask PT (x, y) was based on Simoncelli’s texture detector based on co-occurrence
matrix features. Either edge or texture probability masks could be initially defined
by using other methods. For example, there is abundant literature [65] describing
various methods for texture analysis: there could be methods that would give better
texture segmentation. Furthermore, an iterative method to create the probability
masks could be defined.

• It has been shown in this thesis that the use of a dictionary based on Gabor functions
designed to code the textures present in an image leads to good results (even in PSNR
and HVS metrics). As we could appreciate in Chapter 4, all the dictionaries used all
over our MP decompositions (DG,DAR and DGa) show a high coherence µ parameter
(due to its high redundancy). Anisotropic Refinement atoms are appropriate to code
the edges of the image and Gauss atoms to code image baseband but more efficient
dictionaries to code the texture could be tested. In fact, the Gabor dictionary is
suitable to code textures but, in some cases, it takes a large amount of atoms to code
a simple pattern. Other dictionaries with functions more affine to the textures that
can be found in natural images could be designed. Some alternatives to be tested
are: dictionaries based on Markov Random Fields, parametric texture functions or
even a taylor-made dictionary of textures (with dilation and rotation properties).

• The use of Gabor atoms to code efficiently structures has been largely proved in
this dissertation. A determinate type of images that are very textured are finger-
prints. Hence, Gabor atoms would be suitable to code fingerprints achieving high
compression ratios. Even identification methods based on the good properties of
Matching Pursuit decomposition such as dilation and orientation invariance could be
performed. See Figure 6.1.

• As the reader has read in Section 3.1, a function can be decomposed into a sum
of terms but, to obtain the optimal approximation (these that achieves a minimum
quadratic error), it leads to a NP-hard problem. This is the reason why we choose to
apply a more tractable procedure: the Matching Pursuit suboptimal approximation.
In order to speed-up this algorithm there would be few issues than can be improved:

– Take more than one atom each iteration. In fact, when this section was being
written, this method was being tested in [75], [60].

– We would take advantage of the probability masks (in the supposition that
they have defined properly). Atoms belonging to different dictionaries could be
placed in the same iteration if the masks show that there is a spatial exclusion
between them.
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(a) (b) (c)

Figure 6.1: Fingerprints coding. Subfigure (a), original fingerprint; figure (b), fingerprint
coded with 50 Gabor atoms; figure (c), fingerprint coded with 100 atoms. It is showed
how with very few atoms, an efficient coding of fingerprints can be done with Matching
Pursuit.

• This thesis showed that the use of probability masks to enhance some areas with
a noticeable visual quality lead to nicer representations of the image (in terms of
visual quality). In the same way, we would design a Matching Pursuit coder to code
a determinate type of images, for example faces. Then, instead of a probability mask
for edges and textures, we would use masks to enhance the areas were there are placed
the eyes, nose, mouth,... The idea to focus the coding in the places that have more
information mimics what MPEG4 coders do, that gives more bits to the objects of
interest.

• Into the Split Matching Pursuit coder, we showed that this method achieves good
performance in the sense that takes much more less time to compute a decomposition
with similar PSNR ratio. Few improvement would be done:

– Find out what would be the best segmentation method for this coder.

– Perform the codification by layers. That is, to divide the image in few layers,
each one with one determinate feature and code them separately. After merge
all them (taking in account the energy conservation) to have the reconstructed
image.



Appendix A

Exponential convergence to 0 of the
residual in MP

Let be Rnf the approximation error of f after choosing n vectors in the dictionary and
the energy of this error is given by

‖Rnf‖2 = ‖f‖2 −
n−1∑

k=0

∣∣〈Rkf, gγk
〉
∣∣2 . (A.1)

Let be H a Hilbert Space, then, for any f ∈ H, the convergente of the error to zero
is shown in [96] to be a consequence of a theorem proved by [53]. Here is a detailed
demostration of the exponential convergence to 0 of the residual in MP.

Theorem A.0.1 There exists λ > 0 such that for all m ≥ 0and ∀f ∈ C
N :

‖Rmf‖ ≤ 2−λm‖f‖. (A.2)

As a consequence

f =
+∞∑

m=0

〈Rmf, gγm
〉gγm

, (A.3)

and

‖f‖2 =
+∞∑

m=0

|〈Rmf, gγm
〉|2 , (A.4)

where the convergence of 2 is intended in the strong sense.

Proof Let us verify that exists β > 0 such that for any f ∈ C
N

sup
γ∈Γ

|〈fm, gγ〉| ≥ β‖f‖. (A.5)

103



APPENDIX A. EXPONENTIAL CONVERGENCE TO 0 OF THE RESIDUAL IN MP104

Supose that it is not possible to find such a β. This means that we can construct
{fm}m∈N with ‖fm‖ = 1 and

lim
m→∞

sup
γ∈Γ

|〈fm, gγ〉| = 0. (A.6)

Since the the unit sphere C
N is compact, there exists a subspace {fmk

}k∈N that con-
verges to a unit vector f ∈ C

N . It follows that

sup
γ∈Γ

|〈f, gγ〉| = 0, (A.7)

so 〈f, gγ〉 = 0 for all gγ ∈ D. Since D contains a basis of C
N , necessarily f = 0 which

is not possible because ‖f‖ = 1. This proves that our initial assumption is wrong and,
hence, there exists β such that A.5 holds.

The decay condition A.2 is derived from the energy conservation:

‖Rm+1f‖2 = ‖Rmf‖2 − |〈Rmf, gγm
〉| . (A.8)

The Matching Pursuit chooses gγm
that satisfies

〈Rmf, gγm
〉 ≥ α sup

γ∈Γ
|〈Rmf, gγ〉| , (A.9)

and A.5 implies that 〈Rmf, gγm
〉 ≥ αβ‖Rmf‖. So

‖Rm+1‖ ≤ ‖Rmf‖
√

1 − α2β2, (A.10)

which verifies A.2 for

2−λ =
√

1 − α2β2 < 1. (A.11)

This also proves that

lim
m→∞

‖Rmf‖ = 0. (A.12)



Appendix B

Babel function for a Gaussian
Dictionary DG

To calculate the Babel function of a generic atom, we have to apply the Babel function
definition introduced by [88]

µ1(m) = max
|Λ|=m

max
ψ

∑

Λ

|〈ψ, gγ〉| , (B.1)

where the vector ψ ranges over the atoms indexed by the complementary of Λ (Ω/Λ).
We recall the simplified expresion of this equation as

µ1(m) = max
|Λ|=m

max
k/∈Λ

∑

j∈Λ

∣∣〈gγk
, gγj

〉
∣∣ . (B.2)

Then, to make a feasible analytical calculation of this function we must take in con-
sideration some constrains that would allow us to find how to calculate a lower bound of
it. In the particular case of the Gaussian Dictionary DG, there are two parameters that
define the shape of the atom γ = (p, σ). First we would choose an atom gγ0 that would be
most probable to achieve the maximum sum of scalar products

∑
j∈Λ

∣∣〈gγk
, gγj

〉
∣∣. The most

suitable atom for this choice is the atom gγ0 with position p = (Nx

2
, Ny

2
), where Nx ×Ny is

the size of the image, and the maximum σ allowed by the scales.
Once we have placed the reference atom gγ0 , we will have to define a sequence for

the chosen gγj
|mj=1 that would maximize the sumatory. The first constraint to define this

sequence arises easily: to place the gγj
|mj=1 atoms with the smallest distances from gγ0 . In

this way, the gγj
’s atoms will have more overlapping area and, hence, bigger scalar product.

So, that is

min ‖(xj, yj) − (x0, y0)‖mj=1. (B.3)

The constraint over the parameter σ would be as follows: to take the σ’s in decreasing
order in each point selected. Hence, we have that the election order for gγj

’s atoms the
will be by choosing the atoms belonging to concentric coronas around the central pixel
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with decreasing σ’s at each pixel. Finally, to exemplify this process, we would write the
following pseudo-code:

centerx:=Nx/2;

centery:=Ny/2;

m:=0;

for radius:=0 to min(Nx/2,Ny/2)

{

for kx:=-radius to radius

{

for ky:=-radius to radius

{

if abs(kx)!=radi or abs(ky)!=radi

break;

for sigma:=sigma_min to sigma_max

{

atom(x,m):=centerx+kx;

atom(y,m):=centery+ky;

atom(sigma,m):=sigma;

m++;

}

}

}

}

A symbolic assignment of the atoms for m = 17 would be as follows:

(4)(Nx − 1, Ny − 1, σ0) (6)(Nx, Ny − 1, σ0) (8)(Nx + 1, Ny − 1, σ0)
(5)(Nx − 1, Ny − 1, σ1) (7)(Nx, Ny − 1, σ1) (9)(Nx + 1, Ny − 1, σ1)

(2)(Nx − 1, Ny, σ0) (0) (Nx, Ny, σ0) (10)(Nx + 1, Ny, σ0)
(3)(Nx − 1, Ny, σ1) (1) (Nx, Ny, σ1) (11)(Nx + 1, Ny, σ1)

(16)(Nx − 1, Ny + 1, σ0) (14)(Nx, Ny + 1, σ0) (12)(Nx + 1, Ny + 1, σ0)
(17)(Nx − 1, Ny + 1, σ1) (15)(Nx, Ny + 1, σ1) (13)(Nx + 1, Ny + 1, σ1)

where {σ0, σ1} are the σ’s parameters in decreasing order and the first number within
brackets the order the atoms have been chosen.



Appendix C

Properties of Matching Pursuit

Translation invariance

A dictionary D is translation invariant if for any gγ[~n] ∈ D and any ~p = [px, py] ∈ [0..Nx−
1, 0..Ny − 1] then gγ[~n − ~p] ∈ D. If we compute the Matching Pursuit in a translation
invariant dictionary, then it will be translation invariant. Given the matching of f in D,

f [~n] =
M−1∑

m=0

〈Rmf, gγm
〉gγm

[~n] +RMf [~n], (C.1)

it is easy to verify [21] that the Matching Pursuit of f~p[~n] = f [~n− ~p] selects a translation
by ~p of the same vectors gγm

with the same decomposition coefficients

f~p[~n] =
M−1∑

m=0

〈Rmf, gγm
〉gγm

[~n− ~p] +RMf~p. (C.2)

Rotation invariance

By analogy, we will obtain a rotation invariant Matching Pursuit when we use a rotation
invariant dictionary D. A dictionary is rotation invariant if for any gγ[~n] ∈ D and any
θ ∈ [0, 2π) then gγ[rθ~n] ∈ D where rθ is the rotation operator given by the matrix:

[
cos θ sin θ
− sin θ cos θ

]
. (C.3)

Given the decomposition of f in D,

f [~n] =
M−1∑

m=0

〈Rmf, gγm
〉gγm

[~n] +RMf [~n], (C.4)

one can verify that the Matching Pursuit of fθ[~n] = f [rθ · ~n] selects a rotation by θ of the
same vectors gγm

with the same decomposition coefficients:

fθ[~n] =
M−1∑

m=0

〈Rmf, gγm
〉gγm

[rθ · ~n] +RMfθ[~n] (C.5)
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This makes Matching Pursuit a useful technique to rotate images, because the only
extra calculation we have to do is to modify the index of the reconstruction atoms when
computing the coded image, instead of applying the rotation matrix to every pixel of the
image.

Dilation invariance

As in the previous two cases, Matching Pursuit is dilation invariant if the dictionary of
functions used by the pursuit is dilation invariant. A dictionary D is dilation invariant
when for any gγ[~n] ∈ D and any s ∈ [0, smax] then gγ [

~n
s
] ∈ D. In this case, the matching

pursuit of fs[~n] = f [~n
s
] will select a dilation by s of the same vectors gγm

with the same
decomposition coefficients:

fs[~n] =
M−1∑

m=0

〈Rmf, gγm
〉gγm

[
~n

s

]
+RMfs[~n]. (C.6)

One thing to take in account is that MP is dilation invariant only when the dilation
is applied to the whole ~n. If one applied a different scaling for every component of the
vector, the property of dilation invariance will be lost.

Dilation invariance gives an easy way of scaling an image: the only thing that has to
be done is to modify the scaling parameter (the same for x and y) when reconstructing the
image and we will have a larger or smaller image.

Also if we join rotation, translation and dilation invariance, we get a good tool for
pattern recognition because the coefficients do not depend on the position, the orientation
of the size of the object. Certain coefficients and certain relation of the atom parameters
would mean the presence of a concrete pattern in the analyzed image.

Energy conservation

When we have an infinite decomposition, the energy in the transformed domain and the
energy in the space domain is the same, as we can deduce from Equation 3.11. As

lim
M→∞

RMf = 0 (C.7)

due to the exponential decreasing of the coefficients, when M → ∞, 3.11 turns to:

‖f‖2 =
∞∑

m=0

|〈Rmf, gγm
〉|2 , (C.8)

which mimics Parseval’s equality for Fourier series.
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Invertible

A complete Pursuit recovers a perfect version of the image:

f =
∞∑

m=0

〈Rmf, gγm
〉gγm

. (C.9)

Thus the image f may be reconstructed from its MP coefficients, but if the decom-
position is not complete we will not be able to get a perfect reconstruction, we will have
a reconstruction error given by RMf , where M is the number of coefficients used by the
decomposition.
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