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Abstract. This paper presents a novel approach to the problem of es-
timating and tracking 3D locations of multiple targets in a scene using
measurements gathered from multiple calibrated cameras. Estimation
and tracking is jointly achieved by a newly conceived computational
process, the Projective Kalman filter (PKF), allowing the problem to
be treated in a single, unified framework. The projective nature of ob-
served data and information redundancy among views is exploited by
PKF in order to overcome occlusions and spatial ambiguity. To demon-
strate the effectiveness of the proposed algorithm, the authors present
tracking results of people in a SmartRoom scenario and compare these
results with existing methods as well.

1 Introduction

Estimating the 3D position and velocity of objects in a scene is of interest in
a number of applications such as visual surveillance, SmartRoom monitoring,
human-computer interfaces and scene understanding. Multiple view geometry
has been addressed in [12] from a mathematical viewpoint, but there is still
work to be done for the efficient fusion of redundant camera views and its com-
bination with image analysis techniques for object detection and tracking. In
this framework, the current paper proposes a novel technique to address the
problem of tracking multiple 3D locations based on the data obtained from a set
of calibrated cameras.

Many vision based tracking techniques have been developed to deal with se-
quences from a single perspective [6,11] but considerably less work has been
published on tracking of 3D locations with multiple cameras. One of the main
problems within this topic is establishing correspondences among features from
different perspectives [4]. On the other hand, multiple viewpoints allow exploiting
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spatial redundancy and overcome ambiguities caused by occlusion or segmenta-
tion errors and provide 3D position information as well.

The common methodology to this problem in existing approaches is com-
posed by two disjoint successive steps: estimation of the 3D location and Kalman
tracking over this estimation. Bayesian networks [5,7], algebraic methods [9,17]
or homographies [3] have been employed to establish correspondences among the
projections of the 3D tracked points on all views and then perform a Kalman
tracking directly on this estimated 3D location. The main drawbacks of these
methods are sensitivity to occlusions and spatial ambiguity when resolving the
multiple view correspondence problem [4].

In this paper, we present a novel technique that performs a joint estimation
and tracking of multiple 3D locations allowing the problem to be posed in a
single, unified framework. Projective geometry underlying the image formation
process is exploited allowing the definition of our Projective Kalman Filter.
Information redundancy among views is taken into account to define a data
association process to deal with occlusions and keep a coherent track. This filter
has found applicability in a SmartRoom scenario in the fields of body and gesture
analysis (see Fig.1) or person tracking.

The outline of this work is as follows. Background topics on projective geom-
etry and Kalman filtering required in forecoming sections are reviewed in Sec.2.
Projective Kalman Filter theory is presented on Sec.3. Experimental results are
presented in Sec.4. Finally, conclusion and further improvements are given in
Sec.5.
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Fig. 1. Example of an application of tracking of 3D locations from its projections
within the framework of body analysis (based on [8]). Tracking of the hidden state st]
among time from its projections zx[t], 0 < k < N, would allow obtaining the position
of body joints.



Kalman Tracking on Projective Spaces 3

2 Projective geometry and Kalman Tracking Basics

In order to define a joint estimation-tracking scheme that exploits the under-
lying projective geometry of a multiple view scenario, some basic concepts are
presented. Formation of images formulation and Kalman filtering theory are
briefly reviewed but the reader is addressed to [12] and [15] for more references.

2.1 Multiple view systems and projective geometry

Obtaining two-dimensional coordinates (pixel positions) of an image from a
three-dimensional magnitude (a 3D location) is a process where a dimension is
lost. Formally, projection can be seen as a many-to-one morphism 1 : R? — N2
that transforms 3D Euclidean coordinates in the world reference frame into 2D
coordinates in the camera reference frame. The usual mathematical way to model
this process passes through projective geometry as an efficient description of the
image formation process. Essentially, a camera is regarded as a projective de-
vice where an image is the result of the central projection of 3D world points
onto the image plane. Specifically, the pinhole camera model is employed in
this paper. Projective effects due to vanishing points can be easily modeled and
understood if we take into consideration projective coordinate systems. Many
authors take advantage from projective geometry and homogeneous coordinates
when addressing computer vision problems [12].

Projection operation can be fully described in homogeneous coordinates by
the linear application P : P> — P? denoted as the projection matriz>. So,

x = PX, P = K[R[t], x € P?, X € P?, (1)

where the calibration matriz K models the intrinsic parameters of the camera
(focal length, scaling and projection center) and R and t its extrinsic parameters
(rotation and translation of the camera).

It must be noted that projection is essentially a non-linear operation when
defined by the application ¢ : R? — NZ2. In fact, when adopting the pinhole
camera model and the associated projective geometry model, the relation be-
tween the image coordinates X = [# §]' € N? and the projected coordinates
x = [ry2]T €P?is stated as:

el e

For the sake of simplicity in the notation, let us re-define p : R> — N2 as the
projection operator from 3D coordinates to image coordinates embedding Eq.1
and Eq.2.

3 The notation employed in this paper follows the one described by [10,12].
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2.2 Standard Kalman filter data model

The Kalman filter addresses the general problem of estimating the state s € R”
of a discrete-time controlled process that is governed by the linear stochastic
difference equation:

s[t + 1] = F s[t] + w]t], (3)

with a measurement z € R™ that is
zit+ 1] =Hs[t+ 1]+ vt +1]. (4)

The random variables w(t] and v[t] represent the state and measurement noise
respectively. The matrix F in the difference Eq.3 relates the state at the future
step t + 1 to the state at the current step ¢t and the matrix H in the measure-
ment Eq.4 relates the state to the measurement z[t+1]. Matrices F and H might
change with each time step despite most of the approximations in Kalman fil-
tering assume they are constant. In order to define a convergent Kalman filter,
the random variables w[t] and v[t] are assumed to be independent of each other,
white and with normal probability distributions

p(w) ~N(0,Q), (5)
p(v) ~ N(0,R). (6)

2.3 Standard Kalman filter evolution

In summary, we have the following situation: starting from an initial estimate
§[0] — 1], with an initial state covariance matrix denoted as 3[—1| — 1], for each
observation z[t + 1], the estimate of the state is updated using the following
steps:

1. State estimate extrapolation:
St + 1|t] = Fs]t|t] (7)
2. Error covariance extrapolation:
B[t + 1] = FS[tF" +Q (8)
3. Kalman gain:
K[t+1) =St + H [t + 1] (H[t + US[t+ YgH [t + 1] +R) " (9)
4. State estimate update:
St+1t+1] =8t +1t) + K[t + 1] (z[t + 1] — H[t + 1J8[t + 1]¢])  (10)
5. Error covariance update:

S[t+ 1t + 1] = (I — K[t + 1H[t + 1]) S[t + 1]¢] (11)



Kalman Tracking on Projective Spaces 5

3 Projective Kalman Filter (PFK)

Kalman filtering is the optimal strategy when dealing with estimation problems
that involve linear relationships between the observed and real state variables
and the distorting noise has a normal probability density. In the current anal-
ysis scenario, Kalman theory has still applicability and allows defining a joint
estimation-tracking scheme exploiting the projective nature of the data gathered
from the cameras.

3.1 Multi-camera 3D tracking scenario

Let us define X[t] = [X?[t] Y[t] Z'[t]]T, 0 < i < M, as the M 3D locations,
targets, to be tracked along time. The available data of each of the N cameras is
noted as x4 [t] = [Zi[t] gi[]T, 0 <i< M, 0 <k < N and its formation process
can be described as:

% [t] = ve, (X'[t]) + &Ll (12)

where £} [t] is a noise factor present at time ¢ in the projection of the i-th tracked
object on the k-th camera and ¥p, is the projection operator associated to this
camera. The noise factor &},[t] is mainly formed by two contributions

Eklt] = gilt] + di[1], (13)

where g [t] is the noise introduced by the inaccuracies of the calibration process,
camera resolution, lens distortion,... considered to have a normal probability
distribution in virtue of the Central Limit Theorem. On the other hand, di[t]
is modeled as an impulsive noise result of a bad foreground region detection,
occlusions or heavy lens distortion (borders of the image).

3.2 Kalman filtering on multiple projective planes

Defining a scheme embedding estimation and tracking based on a direct appli-
cation of Kalman equations Eq.3 and Eq.4 is not straightforward. Let us define
our state variable s[t] as the position and velocity that describe the dynamics of
the tracked 3D location in homogeneous coordinates:

sl = (X[ X[)T = [X°[] Y[ Zi[) 1 X[ Y[ 2 0T, (14)

The measure process described by Eq.4 must be modelled according to the
projective nature of the observations. The data captured by the N cameras, that
is the projections of the 3D tracked location given by Eq.12 (pixel positions),
forms the observation vector zlt]:

alt] = [xolt] xift] - xyoaft])" (15)
= [#[t] golt] 1 23] gilt] 1 - @[] gvale) 1T

w

that is the detected projections of X[t] on every view.
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It can be seen that the problem of tracking a 3D location (hidden state) from
its projections on calibrated cameras (observation) does not fit with the standard
Kalman filter formulation. Relations between the real state, X[t], and the obser-
vations, X% [t], are non-linear. Thus, statistical distributions when processed by a
projective device, ¢p,, do not usually keep the same statistical properties. Hence
Kalman filtering theory can not be applied directly. Solutions to this problem
have arisen as the Extended Kalman Filter (EKF) [16], the Unscented Kalman
Filter (UKF) [13] or Particle Filtering [1]. Moreover, normal distribution of the
involved random variables is not fulfilled. The random variables modelling the
movement of the 3D location to be tracked (position and velocity) are modelled
as a normal distribution but the observed variables, that are affected by the noise
factor {lk [t] described by Eq.13, are not. This problem can be coarsely solved by
approximating &% [¢] by a normal distribution however, this solution leads to poor
results in presence of occlusions (large values of €% [t]).

Projective Kalman filter is able to perform a joint estimation and tracking
by adding some modifications on the parameters introduced by Eq.3 and Eq.4 in
order to deal with the data model defined by Eq.14 and Eq.15. Filter evolution
follow the standard Kalman equations defined in Sec.2.3. Regarding the state
equation Eq.3:

e State Transition Matrix: Matrix F is set to be constant over time and
defined as:

(10004000
01000400
001000 70
00010000
F=100001000 (16)
00000100
00000010
100000001

e Process noise: The statistics of process noise w|t] are set to be normal. The
covariance matrix Q defining this random variable is learnt from groundtruth
data and set invariant through time.

In order to define a Kalman scheme to track 3D positions from multiple cam-
era data, the measure process described by Eq.4 must be modelled accordingly
to the projective nature of the observations.

e Observation Matrix: The key point of our Kalman filter scheme relies in
the definition of the observed data. A first proposal for this matrix would
be:

Po 03x4
H= : S (17)

Pn-103x4
However, this matrix, when applied to the state vector s[t] would generate
coordinates that might not be on the image plane (z # 1). Hence, the pro-
jection non-linearity must be compensated to obtain coordinates fulfilling
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z = 1 in order to have a coherent data model. Our proposal for the adaptive
design of the matrix H[¢t + 1] is as follows:

ag--- 0 Po 0344
T N N A
0 - ay_ Prn_103x4
1
I S Y 18
B S R T e (18)

where P% is the 3th row of Py and §[t + 1]¢] is the predicted state given by
Eq.7. In this way, when computing Eq.10 the observed, z[t+1], and predicted
term, H[t + 1]§[t + 1|t], can be compared (both have z = 1) leading to a
meaningful result. The non-linearity introduced by the projection operator,
¥p,, is therefore overcome and successfully modelled.

e Observation noise: The statistics of the observation noise £ [t] can not be
modelled as a random variable with normal distribution. Nevertheless, de-
spite Kalman theory would seem not to be applicable, we propose an scheme
to design an adaptive covariance matrix R[t] that will be able to handle oc-
clusions and make Kalman theory fit in our scheme. Covariance matrix R[]
can be seen as a matrix that controls how reliable is the observed data in
order to use it for the estimation of the hidden state §[t + 1|t + 1]. In the
observation process, there could be two situations: if there is no occlusion
in the projection of X[t] onto the k-th view, then the distorting noise &} []
reduces to be the AWGN gt [t] part or if there is occlusion and the predomi-
nant noise term turns out to be the impulsive d [t] factor. Under this model,
R matrix can be defined for every time step as:

Bo-- O
R]=1: "~ |, (19)
0 - By

where . ) )
By = {O'k if there is no occlusion (&x[t] = gi[t]) (20)

oo if there is occlusion (&x[t] &~ dg[t])

where o, is the observation covariance noise at k-th view. With this scheme,
non-informative data coming from occluded views is disregarded when com-
puting the estimation of the hidden state and projections corrupted with
AWGN are correctly handled. The algorithm to decide whether a view is
occluded or not is described in Sec.3.3.

3.3 Data association problem

In presence of multiple objects, occlusion and noisy measurements, it is impor-
tant to assign the correct measurement to each tracked object. This is called the
data association problem [2]. The following algorithm describes how to associate
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Up, ($ut + 1]])

Image I,

Fig. 2. Data association scenario. State estimation §[t + 1|¢] and the uncertainty region
defined by I'" when projected into image I, allow associating the correct observation,
z0[t + 1], to the interest track dismissing false detections, zp [t + 1].

data to every tracked object in the scene (inspirated by [17]) and decide whether
an occlusion has occurred in some views.

Data association must determine the spatial correspondence of two projec-
tions generated by the same 3D feature at two consecutive time instants in
the same image. In this way, when tracking multiple targets, the algorithm will
be able to perform properly. Moreover, in the case when a correspondence can
not be established probably due to an occlusion, the data association algorithm
should modify the R[t + 1] matrix accordingly. The proposed data association
procedure is described by the following steps:

1. State estimate extrapolation: In order to perform a search for the most
likely correspondence on time ¢+ 1, the algorithm estimates the state at this
time through Eq.7 thus obtaining §[t + 1]¢].

2. Data bounding: From the state evolution equation Eq.3, it can be assumed
that the uncertainties of the 3D tracked location, the state, are modelled by
the process noise described by the covariance matrix Q. Assuming that this
matrix has been correctly estimated, it can be inferred that the 3D position,
s[t + 1], fulfills the condition:

s[t+1] €I, (21)

I {X/ (X —s[t+ 1) W™ (X -8t +1]])" < 0} L (22)

That is, s[t+ 1] is inside the ellipsoid I" in homogeneous coordinates defining
an uncertainty region proportional to the state noise covariance. The conic

matrix W [12] contents information about the topology of the ellipsoid and
we define it from Q as:

0 yor, 0 0 O
_ Q 0| _ 0 vyo, 0 0
W= 0| | 0 0 ~o, O (23)
00 0-1 0 0 0 -1
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In our experiments, a value v = 6 has provided effective results.

3. Data Association: The geometric property defined in Eq.21 and Eq.22
must be also fulfilled when dealing with a projection of this 3D scenario as
depicted in Fig.2. A process to associate the most likely projection at time
t + 1 with respect to t can be defined straightforward. Since our input data
are pixels detected on the projected images we could associate the pixel that
minimizes a given criteria related to the projection of I', ¥p, (I'), to the
i-th track. Generally, the perspective projection of an ellipsoid is an ellipse
defined by the matrix V fulfilling the following condition [12]:

Vx (P,W'P]) 7. (24)

Then, a proposal to establish the best association between the i-th track at
the time ¢ + 1 with the input data z. [t + 1], 0 < [ < L (there could be
uncountable input data coming from the real tracks, false detections,...) can
be done through the Mahalanobis distance:

Z[t+1] = (25)
Jmin V@It +1] = b, (It + 1) V (21t + 1] — i, (3[2 -+ 1[1])) "

4. Occlusion detection: In the case when the condition related to the i-th
track association

\/(Z%[t +1] =, (B[t + 1) V (2 [t + 1] — g, (B[t + 1)) " > 6, (26)

is fulfilled, being 0 a threshold, we can say that there is an occlusion or the
data is too corrupted to be taken into account in next steps of the Kalman
filter. Hence, a criterium to set the parameter 3 from Eq.20 is defined. For
our experiments, we took § = 0.2

4 Results

In order to evaluate the performance of the proposed tracking method, two
experiments were carried out. We applied the described algorithm to both syn-
thetic and real data to demonstrate the efficiency of our solution and compare it
to the performance of the existing approaches to this problem within a Smart-
Room framework [9,17]. The scenario where this algorithm was applied (in both
synthetic and real data) was the SmartRoom at UPC provided with 5 fully
calibrated wide angle lense cameras with a resolution of 768x576 pixels at 25
fps.

Experiment 1: Synthetic data

A synthetic path was created simulating the movement of a single person walking
inside a SmartRoom. For this scenario two possibilities of the noise factor &y
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were studied: only Gaussian noise or Gaussian noise and occlusions added in the
projected views. For the first case, different Gaussian noise levels were added
in the projected views according to the measurement equation Eq.4. For the
second case, occlusions were simulated by adding high amplitude noise bursts
of a duration of 10 frames with Pycclusion = 0.3. For these input data, PKF
and the standard KF [9,17] algorithms were applied to test and compare the
performance of our joint estimation-tracking scheme. Fig.3(a) and 3(b) depict
the error curves for different levels of noise in the two situations. Fig.3(c) shows
the zenital view of the grountruth and PKF and KF estimated paths. Finally,
Table 1 shows some quantitative results comparing PKF and KF performances.

Table 1. Mean and standard deviation of the error for tracks with different levels of
Gaussian noise for PKF and KF with 5 cameras and no occlusions. (Values in mm)

Gaussian Noise PKF KF

o? I o I o

50 7.93 3.90 9.48 4.38
100 10.31 5.09 13.13 6.17
150 11.90 5.90 15.87 7.54
200 13.11 6.55 18.15 8.68
250 14.01 7.10 20.12 9.66
300 14.90 7.58 21.83 10.54

Experiment 2: Real data

In order to test our system, a sequence of 400 frames with two people spon-
taneously interacting with each other was recorded. Foreground regions were
segmented and the top of each region in every view was taken as the input data
in order to track the 3D head of each person. By applying PKF, we obtained
the tracking results depicted in Fig.4 but, when applying KF, occlusions made
the tracker unable to keep a coherent track along time. In the case were the
foreground regions representing the two people merged in one view, the redun-
dancy in the other views allowed keeping coherent tracks but accuracy of the
position estimation decreased. Video results for this sequence can be obtained
at http://gps-tsc.upc.es/imatge/ _Ccanton/pkf .zip.

5 Conclusions and Future Work

A new approach towards tracking 3D locations from its projections on multiple
calibrated cameras has been presented. The proposed scheme performs a joint
estimation and tracking by taking advantage of the projective nature of the
observations, defining the Projective Kalman Filter. Results on synthetic and
real data proved this scheme to produce more reliable results in comparison
with the standard Kalman approaches to this problem. The accuracy of PKF was
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Fig. 3. Results on synthetic data. In (a), the error curves for the PKF and KF for
diverse levels of Gaussian noise. In (b), the error curves for the PKF and KF operating
in the same noise conditions with a Pocclusion = 0.3 and an occlusion length of 10
samples. In (c), the groundtruth trajectory of the location of interest and the results
of PKF and KF (zenital view).

good, even though the error in the experiments with real data were conditioned
by calibration, foreground segmentation and camera positions.

Future research perspectives involve the development of schemes more robust
to occlusions, input data inconsistencies and position of the cameras. Applica-
tions of this technique to body analysis and person tracking are under research
as well.
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