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1 Introduction

Among all types of images, fingerprints have been always a target for signal processing
researchers due to the large existing libraries and the need to store and manage them
efficiently. There are plenty of methods devoted to code this type of images ([25], [28]) and
this report pretends to present a new approach to fingerprint image compression based on
redundant expansions. Furthermore, an analysis technique based on convex optimization
methods is also presented.

This report is structured in three sections: first, a mathematical introduction to redun-
dant representations of data and Matching Pursuit algorithms (based on my MS Thesis
[4]). Secondly, an image matching algorithm based on convex optimization over several
variables is presented. It will be applied to classify simple patterns such as polygons and
typographic letters. Finally, the prior algorithm is adapted to deal with redundant rep-
resentations of fingerprint images. Unfortunately, due to the large scope of this work few
points are discussed just theorically without any practical result leaving an open door for
future researchers.

In addition, we must say that this report is an application of the knowledge obtained
at the Mathematical Methods for Communications (UPC PhD program subject) in com-
bination with the techniques described in my MS Thesis [4].

1.1 Image Transform Coding

In the field of image coding1, transform strategies have been widely used. That means
not to code the information in the spatial domain (the raw image) but to transform it
into another domain (i.e frequency,...) where the coding process can be performed better
[24],[5]. Let us consider an image in its most elemental representation

I =
Nx−1∑
i=0

Ny−1∑
j=0

c(x, y) δ(x, y), (1)

where c(x, y) is the intenstity of the pixel (x, y). If we want to store this image we need
Nx · Ny bytes2. There are plenty of strategies to reduce the amount of data necessary to

†Nevertheless, there would be many other titles for this document such as: A bundle of ideas
regarding convex optimization.

1In all the scope of this document, we are refering to black and white images.
2Let us consider a quantification of 256 levels of gray, that is 8 bits per pixel.
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reconstruct the original image with a controlled degree of distortion and one of these is the
transform coding.

Basically, the transform coding of information lies in the election of a linear transform
that should acchieve a property very suitable to compress the data: sparsity of the trans-
formed coefficients. That is to concentrate the most of the energy in very few transformed
coefficients in order to dismiss the ones under a treshold and be able to reconstruct the im-
age just with these most powerful (allowing a controlled distortion). Among all the linear
transforms, the one that achieves the optimum energy concentration is the Karhunen-
Löı¿1

2
ve Transform (KLT) that takes as basis functions the eigenvectors of the covariance

matrix of the input signal. The main disadvantages of this transform are its dependence on
the input signal statistics and unavailability to be separated into blocks [23]. In order to
solve these drawbacks, its widely known the use of the Discrete Cosine Transform (DCT)
used by the JPEG algorithm [25]. The characteristic of this transform is that for stationary
image statistics, the energy concentration properties converge against those of the KLT for
large block sizes.

Hence, there is a lower bound for the compression acchieved by transform coding stated
by the KLT. But we have to recall that transform coding is based on linear transformations
and these ones regard on basis of vectors. Our goal is to introduce decompositions over
sets of vectors that go beyond a basis; we define it as a ”transform” but it lacks of the
injection property because the decompositions of a vector over this set are infinite. Even
though, we will keep the main idea of sparsity and introduce a theory of decomposition
over a redundant set of vectors.

2 Mathematical background

2.1 Adaptive Greedy Approximations

For data compression applications and fast numerical methods it is important to accurately
approximate functions from a Hilbert space H using a small number of vectors from a
given family {gγ}γ∈Γ. The standard problem in this regard is the problem of M -term
approximation where one fixes a basis and looks to approximate a target function f by
a linear combination of M terms of the basis. For any M > 0, we want to minimize the
aproximation error

ε (M) = ‖f − f̃‖ =
∥∥∥f − ∑

γ∈IM

cγgγ

∥∥∥, (2)

where IM ∈ Γ is the subspace formed by the M vectors that approximate our function f ,
cγ are the ponderation coefficients and ‖ · ‖ is a general norm.

When the basis is orthogonal (a wavelet basis for instance), then, this type of approx-
imation is the starting point for compression algorithms. In this special case, when an
orthogonal basis {ψk}N

k=1 ∈ H (dimH = N) is taken to perform our M -term decomposi-
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tion, this decomposition will be unique

f =
M∑

k=1

ck (f)ψk + ε (M) M < N, (3)

where the coeficients {ck (f)}M
k=1 are the set of the Fourier coefficients of f , that is, the

set of M vectors which have the largest inner products within 〈f, ψk〉Nk=1. The problem of
M -term approximations with regard to a basis has been studied thoroughly in [11],[10],[9].

One way to greatly improve these approximations consists in enlarging the collection
{gγ}γ∈Γ beyond a basis. This enlarged, redundant family of vectors will be called dictio-
nary. To be more precise, we define a dictionary as a family D = {gγ}γ∈Γ of vectors in
a N−dimensional Hilbert space H, where the cardinality of D is P and P > N . All the
vectors of D accomplish that ‖gγ‖ = 1 and the finite linear expansions of D are dense in H
(spanD = H) [34]. For our purposes, the application of adaptive greedy approximations
to image processing, we take H = L2(R2) 3 and we will call the vectors belonging to D as
atoms.

Under an overcomplete basis (dictionary) the decomposition of a signal is not unique
and this redundancy can offer some advantages (and also few drawbacks). One is that
there is greater flexibility in capturing structure in the data. For example, if a signal is
largely sinusoidal, it will have a compact representation in a Fourier basis. Similarly, a
signal composed of chirps is naturally represented in a chirp basis. Combining both of
these bases into a single overcomplete basis would allow compact representations for both
types of signals [6],[33],[12]. It is also possible to obtain compact representations when the
overcomplete basis contains a single class of basis functions, for instance: an overcomplete
Fourier basis, with more than the minimum number of sinusoids, can compactly represent
signals composed of small number of frequencies.

When the dictionary is¡ redundant, finding a family of M vectors that approximates f
with an error close to the minimum is clearly not achieved by selecting the vectors that
have maximal inner products with f [8]. It is proven in [8] that for general dictionaries the
problem of finding an M -element optimal approximations belongs to a class of computa-
tionally intractable problems: the set of NP-hard problems. That means that there is no

3Notation:
The space L2(R2) is the Hilbert space of complex valued functions such that

‖f‖ =
∫ +∞

−∞

∫ +∞

−∞
|f (x, y) |2 dx dy

The inner product of (f, g) ∈ L2(R2) is defined by

〈f, g〉 =
∫ +∞

−∞

∫ +∞

−∞
f(x, y) g(x, y) dx dy

And the norm is defined as
‖f‖ = 〈f, f〉1/2
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(a) (b)

(c) (d)

Figure 1: Example of representations. In the figures (a) and there are the decompositions
over a orthogonal basis of a curve with 3 and 10 terms respectively; in the figures (c) and
(d) there are the decompositions of the same curve over an overcomplete dictionary with 3
and 8 terms. Using an overcomplete dictionary we capture the structure of the curve with
much more less terms than with a decomposition using an orthogonal basis.

known polynomial time algorithm that can compute the approximation f̃ that minimizes
‖f − f̃‖ [7],[21].

Because of the difficult of computing optimal expansions, we turn to suboptimal al-
gorithms: pursuit algorithms or adaptive greedy algorithms. These algorithms reduce
the computational complexity by searching for efficient but non-optimal approximations.
Within this family of algorithms we can enumerate Matching Pursuit (with its variants)
and Basis Pursuit, among others [34],[12].

Under certain circumstances the approximation given by the Matching Pursuit algo-
rithms can achieve sparse characteristics due to the fact that M (the number of terms to
make this approximation) is much smaller than the dimension. The sparseness constraint
refers to the requirement that to represent the approximation function f̃ we must have
as few ck coefficients as possible [37]. Furthermore, it is proved that Matching Pursuit
produces a (ε,M)-Sparse4 approximation with exponential decay of the error [34],[39]. For

4A (ε,M)-Sparse problem or a (ε,M)-Approximation refers to an approximation that achieves ‖f−f̃‖ < ε
with M terms.
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any M -term approximation obtained with Matching Pursuit we have

‖f − f̃MP‖ ≤

√
1 +

2µM2

(1− 2µM)2‖f − f̃Opt‖, (4)

being µ the coherence of the dictionary D (see Appendix 1), ‖f − f̃MP‖ the approximation
obtained by Matching Pursuit and ‖f − f̃Opt‖ the optimal approximation. That means
that the error is bounded, hence the assumption of Matching Pursuit as a (ε,M)-Sparse
problem is demonstrated.

2.2 Matching Pursuit Algorithm

2.2.1 Introduction

Matching Pursuit algorithm was introduced by Mallat and Zhang [33] giving examples for
the application on unidimensional time-frequency signals (but it can be applied to any type
of signal). This method produces a suboptimal function expansion by iteratively choosing
the waveforms from a general dictionary (typically a rich collection of potential atoms in
a Hilbert space) that best match the function’s structures. The choice of the functions is
performed through a progressive refinement of the signal approximation with an iterative
procedure [8]. This method is closely related to the algorithms used in statistics [19].

The Matching Pursuit algorithms have already found applications in medicine [18] and
image [2] and video coding [1], [32] (though in video coding it is usually used to code the
motion estimation errors). Other flavors of Matching Pursuit can also be found in [33] and
[34] like the Orthogonalised Matching Pursuit that is able to achieve a zero estimation error
by orthogonalizing the directions of projection, with a Gram-Schmidt procedure proposed
by [36]. The resulting orthogonal pursuit converges with a finite number of iterations,
which is not the case for a non-orthogonal pursuit. The price to be paid is the important
computational cost of the Gram-Schmidt orthogonalization, though this is not used due to
practical reasons (fast algorithms to perform this Orthogonal Matching Pursuit have been
already proposed in [22]).

In this section we want to show that Matching Pursuit is much more efficient to do
an image approximation than the usual methods used nowadays in the standard formats
(DCT for JPEG [25] and wavelets for JPEG2000 [26]), so it is possible to transmit an
image at lower bit-rate [14]. Matching Pursuit, though results strongly depended on the
choice of the dictionary(ies) used. In many applications, Gabor functions or symmetric
dictionaries are used; we can greatly improve the results by using two or more dictionaries
that catch more efficiently different features of the image (like edges or textures) as done
in [4].

2.2.2 Formulation

Matching Pursuit is a greedy algorithm that decomposes any signal belonging to a Hilbert
space H into a linear expansion of waveforms that are selected from a redundant dictionary
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(or set of dictionaries) D of functions. These waveforms are iteratively chosen to best match
the signal structures, producing a sub-optimal expansion. Vectors are selected one by one
from the dictionary, while optimizing the signal approximation at each step k (this is the
minimization ‖f − f̃‖k with reference to ‖f − f̃‖k−1).

Let D = {gγ}γ∈Γ be a dictionary of P > N ×M vectors, with the properties cited
above. This dictionary includes N ×M linearly independent vectors that define a basis of
the space RN×M of signals with size N ×M . The Matching Pursuit algorithm begins by
projecting the target function f on a vector gγ0 ∈ D and computing the residue Rf (see
[33] and [34]):

f = 〈f, gγ0〉gγ0 +Rf, (5)

where Rf is the residual vector after approximating f in the direction of gγ0 . Since we
impose Rf to be orthogonal to gγ0 :

‖f‖2 = |〈f, gγ0〉|
2 + ‖Rf‖2. (6)

As we want to minimize ‖Rf‖2 = ‖f‖2 − |〈f, gγ0〉|
2 we must choose gγ0 ∈ D such that

|〈f, gγ0〉| is maximum. In some cases, it is not computationally efficient to find the solution
given by the Matching Pursuit algorithms, and a Matching Pursuit-suboptimal solution is
computed instead:

|〈f, gγ0〉| ≥ α sup
γ∈Γ

|〈f, gγ〉| , (7)

where α ∈ (0, 1] is an optimality factor (α = 1 means that we choose the optimal solution
given by the Matching Pursuit method).

Into the next step, Matching Pursuit subdecomposes iteratively the residue Rf by
projecting it on a vector of D that matches Rf at best. If we consider R0f = f and we
suppose the n-th order residue Rnf(n ≥ 0) has been computed, the next iteration will
choose gγn ∈ D such that:

|〈Rnf, gγn〉| ≥ α sup
γ∈Γ

|〈Rnf, gγ〉| . (8)

With this choice Rnf is projected onto gγn and decomposed as follows:

Rnf = 〈Rnf, gγn〉gγn +Rn+1f, (9)

where Rn+1f and gγn are orthogonal, so the quadratic module of the previous equation is:

‖Rnf‖2 = |〈Rnf, gγn〉|
2 + ‖Rn+1f‖2. (10)

From Eq.9, we can see that the decomposition of f is given by:

f =
N−1∑
n=0

〈Rnf, gγn〉gγn +RNf, (11)
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and with the same principle we can also deduce from Eq.10 that the module of the signal
f is:

‖f‖2 =
N−1∑
n=0

|〈Rnf, gγn〉|
2 + ‖RNf‖2, (12)

where ‖RNf‖ converges exponentially to 0 when n tends to infinity5:

lim
n→∞

‖Rnf‖ = 0. (13)

Hence

f =
∞∑

k=0

〈Rkf, gγk
〉gγk

, (14)

and

‖f‖ =
∞∑

k=0

∣∣〈Rkf, gγk
〉
∣∣2 . (15)

Only with Orthogonalised Matching Pursuit6 [13], [34], [8] the residue is reduced to 0 in
a finite number of iterations but, in most signal processing applications, the fact of having
a non-zero residual is not relevant, due to the fact that the image distortion is under the
visible threshold.

Despite Matching Pursuit is a sub-optimal M -term approximation of a function and it
avoids the NP -hard problem of finding the optimal approximation, the compuational load
is still very high. Optimizations to perform the Matching Pursuit via the FFT have been
proposed in [4] and a short review is done in the Appendix 3.

Matching Pursuit
Best Scalar Product

Parameters to
sendSelected

Dictionary D
gγ

k-th Atom

Figure 2: Matching Pursuit coding process.

5See Appendix 2 for a detailed demonstration
6It is also true that certain types of signals (for example, signals composed by a linear combination of

atoms) can achieve zero error without this method.
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(a) (b)

(c) (d)

Figure 3: Results obtained with by the Matching Pursuit when coding the original image
Lenna, (a). Subfigure (b), (c) and (d) have 50, 100 and 300 atoms each one with and
average of 0.3 bpp.
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2.2.3 Properties of Matching Pursuit

Translation invariance

A dictionary D is translation invariant if for any gγ[~n] ∈ D and any ~p = [px, py] ∈ [0..Nx −
1, 0..Ny − 1] then gγ[~n − ~p] ∈ D. If we compute the Matching Pursuit in a translation
invariant dictionary, then it will be translation invariant. Given the matching of f in D,

f [~n] =
M−1∑
m=0

〈Rmf, gγm〉gγm [~n] +RMf [~n], (16)

it is easy to verify [8] that the Matching Pursuit of f~p[~n] = f [~n − ~p] selects a translation
by ~p of the same vectors gγm with the same decomposition coefficients

f~p[~n] =
M−1∑
m=0

〈Rmf, gγm〉gγm [~n− ~p] +RMf~p. (17)

Rotation invariance

By analogy, we will obtain a rotation invariant Matching Pursuit when we use a rotation
invariant dictionary D. A dictionary is rotation invariant if for any gγ[~n] ∈ D and any
θ ∈ [0, 2π) then gγ[rθ~n] ∈ D where rθ is the rotation operator given by the matrix:[

cos θ sin θ
− sin θ cos θ

]
. (18)

Given the decomposition of f in D,

f [~n] =
M−1∑
m=0

〈Rmf, gγm〉gγm [~n] +RMf [~n], (19)

one can verify that the Matching Pursuit of fθ[~n] = f [rθ · ~n] selects a rotation by θ of the
same vectors gγm with the same decomposition coefficients:

fθ[~n] =
M−1∑
m=0

〈Rmf, gγm〉gγm [rθ · ~n] +RMfθ[~n] (20)

This makes Matching Pursuit a useful technique to rotate images, because the only
extra calculation we have to do is to modify the index of the reconstruction atoms when
computing the coded image, instead of applying the rotation matrix to every pixel of the
image.
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Dilation invariance

As in the previous two cases, Matching Pursuit is dilation invariant if the dictionary of
functions used by the pursuit is dilation invariant. A dictionary D is dilation invariant
when for any gγ[~n] ∈ D and any s ∈ [0, smax] then gγ[

~n
s
] ∈ D. In this case, the matching

pursuit of fs[~n] = f [~n
s
] will select a dilation by s of the same vectors gγm with the same

decomposition coefficients:

fs[~n] =
M−1∑
m=0

〈Rmf, gγm〉gγm

[
~n

s

]
+RMfs[~n]. (21)

One thing to take in account is that MP is dilation invariant only when the dilation
is applied to the whole ~n. If one applied a different scaling for every component of the
vector, the property of dilation invariance will be lost.

Dilation invariance gives an easy way of scaling an image: the only thing that has to
be done is to modify the scaling parameter (the same for x and y) when reconstructing the
image and we will have a larger or smaller image.

Also if we join rotation, translation and dilation invariance, we get a good tool for
pattern recognition because the coefficients do not depend on the position, the orientation
of the size of the object. Certain coefficients and certain relation of the atom parameters
would mean the presence of a concrete pattern in the analyzed image.

Energy conservation

When we have an infinite decomposition, the energy in the transformed domain and the
energy in the space domain is the same, as we can deduce from Eq.12. As

lim
M→∞

RMf = 0 (22)

due to the exponential decreasing of the coefficients, when M →∞, Eq.12 turns to:

‖f‖2 =
∞∑

m=0

|〈Rmf, gγm〉|
2 , (23)

which mimics Parseval’s equality for Fourier series.

Invertible

A complete Pursuit recovers a perfect version of the image:

f =
∞∑

m=0

〈Rmf, gγm〉gγm . (24)

Thus the image f may be reconstructed from its Matching Pursuit coefficients, but if
the decomposition is not complete we will not be able to get a perfect reconstruction, we
will have a reconstruction error given by RMf , where M is the number of coefficients used
by the decomposition.
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3 An Image Matching Algorithm

Prior to analyze such complex problem as a fingerprint machting algorithm we will try
to formulate a generic image matching algorithm based on convex optimization. After a
theoretical analysis we will perfom some simulations to show the efficiency of our algorithm
and its limitations. Due to the wide scope of this work, some results will be shown only
theoretically and will be pendent for a deeper study.

Let us have a library of images called Ik with 0 ≤ k ≤ N − 1 (for example a typographic
set of the alphabet letters or a set of geometrical figures). Let us define Ĩ as an input image
that we know, a priori, belongs to the set Ik. This input image Ĩ presents an unknow
spatial offset (x0, y0), a scaling factor s0, a rotation angle θ0 and even an additive noise.
Hence, deciding which image from the set Ik is being represented by Ĩ can be seen as an
optimization problem based on the minimization of the following equation:

min
ℵ,k

‖Ik − Ĩ (ℵ) ‖2 = min
ℵ,k

ξ (ℵ, k) , (25)

where ℵ = (x0, y0, s0, θ0) under the constrains:

0 ≤ x0 ≤ Nx/2, (26)

0 ≤ y0 ≤ Ny/2, (27)

−1 ≤ s0 ≤ 1, (28)

0 ≤ θ0 ≤ π, (29)

0 ≤ k ≤ N − 1. (30)

So, we want to estimate the values of the parameters that minimize the cost function
for each element of the reference set Ik and then select the element that presents the global
minimum as depicted in the Figure 4.

There are several methods to recognize shapes or forms based, for instance, on neural
networks [31] but the method presented here outperforms by its simplicity when deal-
ing with simple shapes. Although, this method is limited to very simple and particular
geometrical forms.

The first step to solve this problem is to demonstrate that it holds the convexity con-
ditions. That is to show that∥∥∥Ik − Ĩ

(
x− x0, y − y0, θ − θ0,

s

2s0

)∥∥∥
2
, (31)

is convex with the constrains cited above. The convexity of this equation strongly depends
on the shape of the images Ik and Ĩ and it must be studied for each case. Then, let us
study a simple case: Ik being the set of regular polygons with the same area A (with k
being the number of sides, i.e. 3 ≤ k ≤ 10) centered at (Nx

2
, Ny

2
). Hence, we must include

another constrain for this concrete problem:

Arean-gon =
1

4
ns2 cot

(π
n

)
= A, (32)
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Ĩ
Estimate ℵ that
minimizes ξ (ℵ, 0)

Ik−1I0

Estimate ℵ that

· · ·

· · ·

mink{ξ (ℵ, 0) , . . . ξ (ℵ, k − 1)}

Select Î

minimizes ξ (ℵ, N − 1)

Figure 4: General scheme of an image matching algorithm based first on the search of
the parameters that minimize the cost function between the input image Ĩ and the set of
reference images Ik. After, the decided image Î is that one that reaches the minimum cost
function among all the partial cost functions. The aim of this report is to design a reliable
algorithm to compute these minimizations.

with n being the number of sides and s the lenght of each side.
As noted before, the behavior of the cost function ξ(ℵ, k) can not be studied analitically

and must be analyzed though taking into account few premises. To show that the cost
function is convex we should study the behavior of this function for each parameter and,
only if it is convex in all the variables, the function will be convex or at list quasi-convex
[38], [3].

12



• Convexity on the offset (x0, y0)

To perform a first analysis on the convexity of ξ(x − x0, y − y0) let us take the
assumption that the other parameters are set in the following conditions: θ0 = 0,
s0 = 1 and the a priori knowledge of which polygon is being represented by the input
image (k = z). Hence, the cost function would be

‖Iz − Ĩ (x− x0, y − y0, 0, 0) ‖2. (33)

Ik Ĩ

y0

x0

−x0

−y0

Figure 5: On the top, there are depicted the reference and the input image. On the bottom,
the likelihood function between the two images in function of an offset applied to the input
image. The maximum is reached at the point (−x0,−y0) and therefore this is a minimum
of the cost function.

As depicted in Figure 5, the input image resembles more the reference image when
displaced to the point (−x0,−y0). Hence, the cost function is convex in relation with
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the offset parameter when we know which polygon is being represented and there is
neither rotation nor scaling.

To perform a more accurate analysis, let us imagine that the represented polygon is
different from the reference polygon (i.e. the input image represents a pentagon and
the reference image is a triangle). As all the polygons have the same area (hence
none can be completely overlaped by another), the convexity of the cost function
depending on k is granted and, moreover, there is just one minimum per each k.
Moreover, the estimation of the offset (x0, y0) is valid even if the compared polygons
are different.

Even in the case when there is a rotation or a scaling on the input image, the cost
function is still convex and presents a minimum. Finally, we can conclude that the
cost function is convex independently from the rotation, scaling and the reference
image.

14



• Convexity on the rotation θ0

Let us consider a rotation angle θ0 on the input image. If we study the Figure 6 we will
notice that the similarity function (that is the complement of the cost function), is
non-convex. But this is not a drawback because, despite there are several maximums,
all them are valid points due to the simmetry of the polygons. Hence, in this case,
maybe we should talk about local convexity instead of global convexity.

In the case of rotation, there is the same consideration as in the offset: for different
polygons, the estimation of the angle is still valid because when the polygons are
aligned the overlaping reaches its maximum.

 0

 0.5

 1

 1.5

 2

 0  5  10  15  20  25

Ik Ĩ

θ0

Figure 6: On the top, there are depicted the reference and the input image. On the bottom,
the likelihood function between the two images in function of a rotation angle applied to
the input image. There are several maximums due to the simmetry of the polygons, hence
the interest interval should be bounded between [0, 2π

k
).
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• Convexity on the scaling s0

As we stated before: −1 ≤ s0 ≤ 1 that means that the input image can be enlarged
or shrinked. As depicted in Figure 7, the cost function ξ presents a minimum when
the two polygons are correctly scaled. As in the previous cases, the cost function is
convex independently from the other variables.

Ik Ĩ

s0 ≤ 0
s0 ≥ 0

s0

ξ

Figure 7: The cost function reaches a minimum when the input image and the reference
image are fully overlapped. Even if the the reference image is not the same polygon, or it
is rotated or has an offset, the cost function is still convex ensuring the feasibility of the
problem.
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Once the convexity of ξ(x0, y0, θ0, s0) has been proved, we can define a method to reach
this minimum. Among all the existing adaptive methods to reach this minimum we focus
on two: the gradient descent method and the Differential Steepest Descent (DSD) method.
There are other adaptive algorithms such as de RLS or LMS methods but, despite they
are widely used into communications signal processing, its application to image processing
is rather complex in a direct form [30].

The search of the minimum of ξ(ℵ) based on a gradient descent algorithm basically
updates the set of parameters ℵ in order to decrease the value of the cost function. To
perform this operation the parameters are updated by the formula

ℵn+1 = ℵn − µ∇ξ (ℵn) . (34)

Also, a graphic representation can be seen in Figure 8 and more technical references can
be found in [29]

ξ(ℵn)

ℵnℵn+1ℵopt

∇ξ(ℵn)

−µ∇ξ(ℵn)

Figure 8: Gradient descent scheme.

The parameters we must take in account to fully describe our algorithm will be the
estimation of the gradient and the value of the step-size µ. The gradient for each variable,
according to [29] would be estimated as

∇ξ (ℵn) =
ξ (ℵn + δ)− ξ (ℵn − δ)

2δ
(35)

with δ a small increment (with different values depending on the variable we are calculating
the gradient).

The performance of this method is shown in the Figure 9 for various values of the
parameter µ. The reader can see that the convergence and the final error of the algo-
rithm depends on the µ value. To choose the optimal value, there exists methods like
the backtracking line search algorithm. For our simulations we estimate this value to be
µ = 10.
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• Advantages

– This basic algorithm to recognize regular polygons based on convex optimization
gives accurate results into the classification. One of the direct applications
would be to mimic a OCR7 system when dealing with information coded with a
system based on this type of polygons. Also, it performs very well (10% error)
when classifying shapes drawn by hand more or less accurately. Despite its a
simple applicacion its main advantage is the low error ratio when performing a
classification.

– It has been proved its performance for convex regular polygons but it also copes
with concave regular polygons (i.e. stars) due its nice simmetry properties.
Moreover, we expect to have the same performance ratio when dealing with
non-regular convex polygons (to be proved).

• Disadvantages

– We could not state a method to deal with concave non-regular polygons. As a
future research, it might be possible to split a concave non-regular polygon into
a set of convex polygons and try to perform a convex optimization (taking into
account few constraints on the relative position of this sub-polygons). Perhaps
to model this relative position into the minimization process, graph theory could
be very useful.

– The use of DSD algorithm does not perform better in comparison with the
gradient descent one. At list, in the best of the cases, they perform the same.

– Registration algorithms based on the maximization of mutual information have
been proved to be a more efficient when trying to solve problem like this. Also,
those algorithms are based on convex optimization of functions.

7Optical Character Recognition.
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Figure 9: Dependence of the MSE depending on the number of iterations and the step-size
µ for the gradient descent method. As usual in these cases, the larger the µ the fastest the
decay but the greater the error.
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4 Fingerprint representation†

Our first goal will be to code fingerprint images by the Matching Pursuit method described
before.

4.1 Dictionary design

Fingerprint are highly textured images and this feature can give advantages in order to
define the dictionary used by Matching Pursuit. When coding natural images [14], the use
of atoms based on anisotropic refined functions have shown a good performance but it has
been demonstred though in [4] that atoms based on Gabor functions lead to better results
in case of images with patterns or textures. Hence, in the case of fingerprints the election
of Gabor atoms is justified but the parameters that defines the dictionary must be chosen
accordingly to the statistics of the signal. In fact, the most relevant parameter is the
frequency and orientation of the Gabor atoms. If we take a look to the spectrum average
of a fingerprint (obtained by averaging 150 fingerprint images) we get Figure 10. With
this information we can define a taylor-made dicctionary for fingerprint images setting the
range of frequencies in the interval [ωmin, ωmax].

4.2 Results

The use of redundant approximations for such type of images leads to good results ac-
chieving high compression ratios [14],[4]. We will not enter in details due to the extense
existing bibliography and let the Figures 11 and 12 show an example of its performance.

†The techniques described here are the basis of an article that is being writen to be submited to a
conference.
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ωmin

ωmax

ωy

ωx

Figure 10: Average spectrum of a fingerprint set of images. The circular corone defined by
[ωmin, ωmax] contains all the relevant information of a fingerprint image (the stripes). For
our coding and analysis purposes, this area will be the our coding target. The diccionary
used to code the fingerprints will be taylored according to this extreme frequencies in order
to reduce the computational load.
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(a) (b)

(c) (d)

Figure 11: Example of a fingerprint image coded by the Matching Pursuit algorithm. In
(a), the original image and in (b), (c) and (d) the coded image with 100, 200 and 300
atoms. As the reader can see, with few atoms we can reproduce the foremost regions of the
image. Moreover, the difference between (c) and (d) is very small due to the sparsity of
the coding process: in the few first coefficients is concentred the most of the information.

22



Figure 12: Decay of the energy of the Matching Pursuit coefficients. The most of the
energy is regarded by the few first ones, allowing sparse representations. The decay of
this coefficients always follows an exponential rule that have been exploded to design an
adaptive quantizer [16] leading to very high compression ratios.
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5 Convex Optimization Fingerprint Matching

There are many methods to perform an accurate fingerprint recognition based on very
diverse techniques [35]. Taking advantage of our redundant representation of the fingerprint
we will try to formulate two methods to perform a matching of the input image over a
library of fingerprints.

Despite, this reduntant representation is very useful for its sparseness and its capability
to catch the most of the information necessary to perform a matching in few coefficients,
the viability of the methods exposed here is not yet fully proved. Few theorical methods
are shown here but the practical results have been unpossible to carry out due to the lack
of time. Hence, this is a collection of nice ideas about convex optimization, fingerprint
representation that would be used for a future research.

5.1 Notation

First of all, the us review few aspects on the notation to solve this problem:

• Ik where 0 ≤ k ≤ N − 1 : The set of N images containing the reference fingerprints.
We assume that they do not present neither rotation, deformation nor any unpleasant
artifact.

• Ĩ : The input image we want to classify and identify its origin, that is from which
reference image Ik they present a maximum likelyhood.

• Γ(k,p) = (cp, xp, yp, sp, θp, fp)(k) where 0 ≤ k ≤ N − 1 and 0 ≤ p ≤ M − 1: The
set of M vectors that define the Gabor atoms obtained by the Matching Pursuit
decomposition for each of the N images of the reference set Ik. The components of
each vector are the necessary fully to define each atom: normalized scalar product c,
position (x, y), scaling factor s, rotation angle θ and frequency f .

• β = (ϕ, x0, y0, s0): The factors that can distort the input image Ĩ. Mainly, they are:
a rotation angle from the original position ϕ, a spatial offset (x0, y0) or an uniform
scaling over the fingerprint s0 as depicted in the Figure 13. Although this last as-
sumption about the scaling is not completely true because a scaling or a deformation
could be applied only locally (our fingerprint does not deform globally) it will deal
with our objectives.

There would be at list two ways to carry out the fingerprint match using an adaptive
algorithm based on convex optimization. Here we present them theorically commenting
their strong and weak features.
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s0
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y

α

Figure 13: Illustration of the parameters that would distort a fingerprint in comparison
with its reference: the spatial offset (x0, y0), the scaling factor s0 and the rotation angle α.

5.2 Method 1

A first method would be defined in the same way as a gradiend descent algorithm:

1. Estimate the a set of initial parameters β
0
.

2. Apply the parameters β
n

to the set Γ(k,p) as to obtain the set of atoms for the

reconstruction Γ̂(k,p):

Γ̂(k,p) =

(
cp, (xp − x0) · rα, (yp − y0) · rα,

sp

s0

, θp + α, fp

)
(k)

, (36)

where rα is the rotation operator.
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3. Reconstruct the image using the atoms Γ̂(k,p).

4. Compute the cost function ξ(·) (basically, the MSE between the reconstructed image
and the reference but it could be any other convex measure).

5. Update β
n+1

= g(β
n
) (g(·) is usually defined as a small increment of each parameter

towards the inverse direction of the gradient of its parameter).

6. Check if the stop condition is fulfilled and end the process or return to the step 2 in
the other case.

5.3 Method 2

1. Generate a set of feature maps :

Frequency and Orientation Map MĨ
f (x, y) =

∑M−1
p=0 Af

p(x, y), (37)

Normalized Energy Map MĨ
e (x, y) =

∑M−1
p=0 Ae

p(x, y), (38)

with

Af
p =

{
fp · (cos θp + j sin θp) if

√
x2 + y2 ≤ sp

0 otherwise
, (39)

and

Ae
p =

{ cp

cmax
if

√
x2 + y2 ≤ sp

0 otherwise
. (40)

The complex valued map Mf (x, y) collects the information regarding with the dis-
tribution of the frequencies in the image. For every atom there is assigned a disk of
radius sp with a complex valued height describing the horizontal and vertical compo-
nents of the frequency. It is proved that the most of the information of a fingerprint
is regarded by the stripes represented by the frequencies of the atoms. Hence, by
allocating the frequencies and orientations represented in each region of the image
we can define a technique to compare two fingerprints and its coherence.

In the other hand, the real valued map Me(x, y) models the intensity of the stripes
within the finger. In this case, each atom has assigned a disk with a heigh proportional
to its relevance.

The minimization problem can be seen thus as a vectorial minimization:
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min
β,k

∥∥∥∥(
MIk

f

(
x− x0

s0

,
y − y0

s0

)
· rα,MIk

e

(
x− x0

s0

,
y − y0

s0

)
· rα

)
−

−
(
MĨ

f

(
x− x0

s0

,
y − y0

s0

)
· rα,MĨ

e

(
x− x0

s0

,
y − y0

s0

)
· rα

)∥∥∥∥
ξ(·)

(41)

2. Define a first estimation of the parameters β
0
.

3. Apply the parameters β
0

to each map. By using these feature maps we can perform

the scaling, rotation and offset addition directly to the Af
p and Ae

p funtions. In
this way, the algorithm is computationally more efficient than the first one. These
operations are defined by:

Af
p =

{
fp · (cos (θp + α) + j sin (θp + α)) if

√
(x− x0)

2 + (y − y0)
2 ≤ sp

s0

0 otherwise
, (42)

and

Ae
p =

{
cp

cmax
if

√
(x− x0)

2 + (y − y0)
2 ≤ sp

s0

0 otherwise
. (43)

4. Compute the cost function ξ(·) between the estimated feature maps and the reference
feature maps (the fingerprints database). Here we find a point not solved yet. The
function ξ(·) can not be defined as the MSE function because it is non-convex. Hence,
we should try to define a measure that would be convex over the space we are working
on. Unfortunately, this is a topic we are still working on and our algorithm is stuked
here.

5. Update the coefficients and return to the point 2 until a stop criteria is reached.

5.4 Discussion

Two methods to match fingerprint images have been proposed in this report. When we tried
to study a matching algorithm based on convex optimization we had to face the problem
of non-convexity and even the suitability of this methods for this problem. Nevertheless,
the use of convex optimization seems to be a feasible approximation to the solution but it
must be studied more thoroughly.

Despite the solution of this problem has not been found, it has given some light to
some other aspects of this problem, for example, the method 2 is a new approach to this
problem and the author will study the existence of a norm ξ(·) convex over this space of
functions. Indeed, the use of convex theory is very enrichful and promising in this field!
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Appendix 1: Dictionary coherence

Matching Pursuit greedy approximation of functions depends exclusively on the election
on the dictionary/ies the decomposition will be done over. Hence, a careful study over the
design and performance of the dictionary/ies must be done. Many parameters are involved
in the design of a dictionary: shape of the atoms, orientation, scales, frequency (i.e. the
case of Gabor atoms),... The values those parameters take will define the size, properties
and performance of the dictionary. For instance, a careful design of the dictionary would
lead us to reduce its size by eliminating atoms that would never be used (for example,
analyzing the spectrum of the input images as done here). Furthermore, the redundancy
of the dictionary can be controlled.

Once the dictionaries are already chosen, a quality parameter might be defined to
evaluate how good our choice is. The most fundamental quality parameter associated with
a dictionary is the coherence µ [39], defined as

µ = max
j 6=k

∣∣〈gγj
, gγk

〉
∣∣ gγk

, gγj
∈ D. (44)

Roughly speaking, this number measures how much two vectors in the dictionary look
alike. This parameter is not a definitive way to evaluate the performance of the dictionary
since it only reflects the most extreme correlations in the dictionary. Nevertheless, it is
easy to calculate, and it captures well the behavior of uniform dictionaries. This is our
case of a dictionary formed by a set of Gabor atoms. In other cases, there the structure
of the dictionary does not present this property, more effective techniques are presented as
the Babel function [39].
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Appendix 2: Exponential convergence to 0 of the resid-

ual in MP

Let be Rnf the approximation error of f after choosing n vectors in the dictionary and
the energy of this error is given by

‖Rnf‖2 = ‖f‖2 −
n−1∑
k=0

∣∣〈Rkf, gγk
〉
∣∣2 . (45)

Let be H a Hilbert Space, then, for any f ∈ H, the convergente of the error to zero
is shown in [40] to be a consequence of a theorem proved by [27]. Here is a detailed de-
mostration of the exponential convergence to 0 of the residual in MP.

Theorem
There exists λ > 0 such that for all m ≥ 0 and ∀f ∈ CN :

‖Rmf‖ ≤ 2−λm‖f‖. (46)

As a consequence

f =
+∞∑
m=0

〈Rmf, gγm〉gγm , (47)

and

‖f‖2 =
+∞∑
m=0

|〈Rmf, gγm〉|
2 , (48)

where the convergence of 2 is intended in the strong sense.

Proof
Let us verify that exists β > 0 such that for any f ∈ CN

sup
γ∈Γ

|〈fm, gγ〉| ≥ β‖f‖. (49)

Supose that it is not possible to find such a β. This means that we can construct
{fm}m∈N with ‖fm‖ = 1 and

lim
m→∞

sup
γ∈Γ

|〈fm, gγ〉| = 0. (50)

Since the the unit sphere CN is compact, there exists a subspace {fmk
}k∈N that con-

verges to a unit vector f ∈ CN . It follows that

sup
γ∈Γ

|〈f, gγ〉| = 0, (51)
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so 〈f, gγ〉 = 0 for all gγ ∈ D. Since D contains a basis of CN , necessarily f = 0 which
is not possible because ‖f‖ = 1. This proves that our initial assumption is wrong and,
hence, there exists β such that Eq.49 holds.

The decay condition Eq.46 is derived from the energy conservation:

‖Rm+1f‖2 = ‖Rmf‖2 − |〈Rmf, gγm〉| . (52)

The Matching Pursuit chooses gγm that satisfies

〈Rmf, gγm〉 ≥ α sup
γ∈Γ

|〈Rmf, gγ〉| , (53)

and Eq.49 implies that 〈Rmf, gγm〉 ≥ αβ‖Rmf‖. So

‖Rm+1‖ ≤ ‖Rmf‖
√

1− α2β2, (54)

which verifies Eq.46 for

2−λ =
√

1− α2β2 < 1. (55)

This also proves that

lim
m→∞

‖Rmf‖ = 0. (56)
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Appendix 3: Full search Matching Pursuit via FFT

Matching Pursuit is a greedy algorithm that decomposes a signal over a redundant set of
functions, the dictionary. As we have seen in the former section, the algorithm computes
for each iteration all the scalar products 〈Rkf, gγk

〉 (in the k-th iteration) and then chooses
the one with the largest absolute value. If we analyze in detail the computational load this
calculations generate, for example for a dictionary formed by anisotropic refined atoms
[14] we will find that it is huge. For a square image of size Nx ×Nx, the number of scalar
products between images to be done in the computation of one decomposition term is

N2
x ×

1

2
(3× (log2 (Nx)− 2) + 1)2 × 18 ∼ O

(
N2

x × log2
2 (Nx)

)
, (57)

equivalent to have this amount of operations per coefficient

O
(
N4

x × log2
2 (Nx)

)
. (58)

Then, optimizations of this algorithms are required in order to reduce the computational
load. But here arises another problem: when performing Matching Pursuit, it can be
chosen between generating the atoms at each iteration to compute the scalar products
or storing them in memory in order to save computational time. The option to generate
and store the atoms in the memory is the optimal one in terms of speed but on the other
hand there is the problem of memory capacity. Hence, there is a compromise between
memory and speed. Moreover, to perform the Matching Pursuit decomposition without any
optimization implies to store in memory all the functions of the dictionary (a prohibitive
amount of memory indeed, for further details on the size of the dictionaries see [4]). In
the pursue of optimizations, suboptimal approximations of Matching Pursuit have been
proposed by using genetic algorithms ([14], [15]) that reduce the computational load but
the drawback of this type of techniques are the non repeatibility of the process, that is: if
you apply twice the algorithm over the same image you obtain different results.

An optimization, proposed by [17], is to use the properties of the Discrete Fourier
Transform to reduce the computational load (using also the Fast Fourier Transform) and
reduce though the memory required to store the dictionary. This optimization is based on
the property of the duality product-convolution of the DFT already introduced in the first
chapter.

Here we do a detailed explanation. Let D be a dictionary defined by a set of parameters
γ = (ℵ,p) where ℵ are the set of parameters concerning the shape of the atom (orienta-
tion,scaling,...) and p = (px, py) the point into the image where the atom will be centered.
Let us define V ∈ D the sub-dictionary generated by γ = (ℵ,0), the set of atoms centered
in the middle of the image 8. Strictly applying the Matching Pursuit algorithm, to find the
most powerful atom at the n-th iteration of the process we should compute all the scalar
products |〈Rnf, gγn〉| with gγn ∈ D and then choose the largest one. The search of the

8For this expanation, let us consider an image bounded into [−Nx

2 , Nx

2 ]× [−Ny

2 ,
Ny

2 ].
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most powerful can be rewritten as the search of zγn(x, y) ∈ V that maximizes

max
γn

|〈Rnf, zγn(x− px, y − py)〉| , (59)

with px ∈ [−Nx

2
, Nx

2
] and py ∈ [−Ny

2
, Ny

2
]. With a simple manipulation, Eq.59 can be

formulated in terms of a convolution operation

max
γn

∥∥∥Rnf ∗ zγn(x, y)
∥∥∥, (60)

bounded into the frame [−Nx

2
, Nx

2
] × [−Ny

2
, Ny

2
]. At this point, by applying the duality

product-convolution of the DFT it leads to

Rnf ∗ zγn(x, y)
F−→ R̂nf · Ẑγn(x, y), (61)

where R̂nf and Ẑγn(x, y) are the Fourier transforms of Rnf and zγn(x, y) respectively.
Finally, to search the most powerful atom by using this DFT based method can be written
as

max
γn

∥∥∥Rnf ∗ zγn(x, y)
∥∥∥ = max

γn

∥∥∥F−1
{
R̂nf · Ẑγn(x, y)

}∥∥∥. (62)

This full-search method proposed below takes advantage of the FFT usage, saving a lot
of computational load. Exactly, the Matching Pursuit complexity for one atom is reduced
to

O
(
N2

x × log3
2 (Nx)

)
. (63)
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Appendix 4: Dictionary based on Gabor functions

In most of the previous research done on Matching Pursuit over images, most of the
decompositions have been done over dictionaries based on Gabor [20] atoms due to its
good time-frequency localization. For our purposes, the use of Gabor atoms is justified
due to the fact that they are appropriate functions to code patterns and textures.

A Gabor atom is defined as a modulated Gaussian function:

gγ(x, y) =
√

2Ke−(x2+y2)ei(ωxx+ωyy), (64)

where K is a normalization constant to have unitary norm. But, for our purposes, we will
take just the real part of gγ(x, y). Then we get:

gγ(x, y) =
√

2Ke−(x2+y2) cos(ωxx). (65)

Assuming that our image has a size ofNx×Ny pixels, we can define the set of parameters
γ = (p, s, θ) necessary to generate the whole dictionary:

p = [px, py] where px ∈ [0, Nx), py ∈ [0, Ny) translations
s = [sx, sy] scaling factors
θ ∈ [0, π) rotation,

with p the translation vector that will set the center of the atom into the image, s where
sx is the dilation in the x axis and sy is the dilation in the y axis and θ the rotation angle.
For simplicity, we will take isotropic Gaussians instead of anisotropic Gaussians, that is
sx = sy.

At this point, we have to choose our parameters carefully to be sure that this set of
atoms have an associated family that is a frame of L2(R2) [34]. If ∆θ and ∆s are small
enough finite linear expansions of space-frequency atoms are dense in L2(R2), hence this
dictionary is also complete and, then, valid for image coding. To satisfy these conditions
we have chosen our parameters in this way:

• ∆θ = 100.

• sx ∈ [0, NN · (blog2(N)c − 3)] ∈ Z where NN ∈ [1, log2(N)] ∈ Z, N = min(Nx, Ny)
and sx > sy.

• ωx covering the frequencies where there is presence of a signal.

Once we have defined the parameters to generate the atom’s family, we can define the
procedure to create the atom. This procedure is non-commutative, so, the order is fixed
and its application is:

1. Apply the translation by [px, py] ∈ Z2.

2. Rotate by θ the translated atom.
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3. Scale the translated and rotated atom by σx = 2
sx

NN in the axis x.

This leads to compute:

xγ =
(x− px) cos(θ) + (y − py) sin(θ))

2
sx

NN

(66)

yγ =
(x− px) sin(θ)− (y − py) cos(θ))

2
sy

NN

, (67)

and gγ = g(xγ, yγ).

Figure 14: Gabor atom.
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