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ABSTRACT

This paper presents a novel approach to the problem of determin-
ing head pose estimation and face 3D orientation of several peo-
ple in low resolution sequences from multiple calibrated cameras.
Spatial redundancy is exploited and the heads of people in the
scene are detected and geometrically approximated by an ellip-
soid using a voxel reconstruction and a moment analysis method.
Skin patches from each detected head are located in each camera
view. Data fusion is performed by back-projecting skin patches
from single images onto the estimated 3D head model, thus pro-
viding a synthetic reconstruction of the head appearance. Finally,
these data are processed in a pattern analysis framework thus giv-
ing a reliable and robust estimation of face orientation. Tracking
over time is performed by Kalman filtering. Results are provided
showing the effectiveness of the proposed algorithm in a Smart-
Room scenario.

1. INTRODUCTION

The current paper addresses the problem of detecting and tracking
the head of people present in a SmartRoom and estimating the ori-
entation of their faces in the framework of multiple view geometry.
Multi camera systems are widely used for image and video analy-
sis tasks in SmartRooms, surveillance, body analysis or computer
graphics. From a mathematical viewpoint, multiple view geome-
try has been addressed in [1] , but there is still work to do for the
efficient fusion of information from redundant camera views and
its combination with image analysis techniques for object detec-
tion, tracking or higher semantic level analysis such as attitudes
and behaviors of individuals.

A number of methods for head pose estimation has been pro-
posed in the literature [2]. The general approach involves esti-
mating the position of specific facial features in the image (typi-
cally eyes, nostrils and mouth) and then fitting these data to a head
model. The accuracy and reliability of the feature extraction pro-
cess plays an important role in the head pose estimation results.
In practice, many of these methods still require manually select-
ing feature points, as well as assuming that near-frontal views and
high-quality images are available. For the applications addressed
in our work, such conditions are usually difficult to satisfy. Spe-
cific facial features are typically not clearly visible due to light-
ing conditions and wide angle camera views. They may also be
entirely unavailable when faces are not oriented towards the cam-
eras. Methods which rely on a detailed feature analysis followed
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Fig. 1. System flowchart: acquisition, spatial and color analysis,
ellipsoid model fitting, face orientation estimation and tracking.

by head model fitting would fail under these circumstances. Fur-
thermore, most of the existing approaches are based on monocular
analysis of images but few have addressed the multiocular case for
face or head analysis [3].

We propose a method for 3D face orientation estimation which
is both robust to enviromental conditions and computationally sim-
ple for real-time applications. Redundancy among camera views is
exploited to obtain robust estimations of head 3D positions and to
fit a model of the head. A fusion process of color and spatial infor-
mation from all cameras is performed obtaining a synthetic recon-
struction of face appearance in 3D. Finally, two analysis methods
on these data are proposed in order to obtain the orientation of the
face.

This method has been successfully applied to a multi-camera
SmartRoom scenario in the framework of a scene understanding
project involving tracking of attention in meetings. Other fields
where our algorithm has potential applicability are vehicle driver
attention tracking, disabled people interfaces and face recognition.

2. LOW LEVEL SIGNAL ANALYSIS MODULES

According to the flowchart depicted in Fig.1 the system comprises
four low level image processing modules: image acquisition, spa-
tial and color analysis and head model fitting. These modules pro-
vide data to the higher level analysis module that performs the in-
formation fusion required to estimate the orientation of heads and
faces, and to the Kalman tracking module as well.

For a given frame in the video sequence, a set of N images
are obtained from the N cameras. Each camera is modeled using
a pinhole camera model based on perspective projection. Accu-
rate calibration information is available. Foreground regions from



input images are obtained using a segmentation algorithm based
on Stauffer-Grimson’s background learning and substraction tech-
nique [4]. It is assumed that the moving objects are human people.
Original and segmented images are the input information for the
rest of image analysis modules described here.

The final low level signal analysis module employed in our
system is a standard Kalman tracker with a constant velocity model.
With respect to our model of parameters evolution, it computes the
predictions and adds the information coming from the measure-
ments in an optimal way to produce a posteriori estimations of the
parameters. Moreover, the tracking loop helps rejecting false de-
tections and dealing with oclusions. The tracked parameters are
the geometric parameters defining the head and the estimated face
orientation angle. For the initialization of this filter, hand marked
sequences were analyzed in order to estimate the noise correlation
matrices.

2.1. Spatial Analysis Module

Prior to any further image analysis, the analyzed scene must be
characterized in terms of space disposition and configuration of
the foreground volumes, i.e. people candidates, in order to se-
lect those potential 3D regions where the head of a person could
be present. Images obtained from a multiple view camera system
allow exploiting spatial redundancies in order to detect these 3D
regions of interest. This task is carried out by the spatial analysis
module.

Once foreground regions are extracted from the set of N orig-
inal images at time t, a set of M 3D points xk, 0 ≤ k < M , cor-
responding to the top of each 3D detected volume in the room
is obtained by applying a robust Bayesian correspondence algo-
rithm described in [5]. Information coming from the tracking loop
speeds up the process narrowing the search space of these corre-
spondences on time t+1 and allows rejecting false head detections.

The information given by the established correspondences al-
lows defining a bounding box Bk, centered on each 3D top xk

with an average size adequate to contain the human head candi-
date. Afterwards, a voxel reconstruction [6] is computed on each
bounding box Bk, thus obtaining a set of voxels Vk defining the
k-th 3D foreground volume candidate as a head. In order to re-
fine and verify whether the set Vk indeed belongs to an ellipsoidal
geometric shape, a template matching evaluation [6] is performed.
Results for this module are shown in Fig.2(a) and 2(b).

2.2. Color Module

Foreground regions detected by the segmentation algorithm pro-
vide 2D masks within the original images where skin color pix-
els are sought. The masked original images are processed in the
CbCr color space since different skin types mostly differ in the
luminance component and not with regard to the hue value. Af-
terwards, a probabilistic classification is computed on the CbCr
information [7] where the color distribution of skin is estimated
from offline hand selected samples of skin pixels in the same light
conditions of the online experiments and approximated by a Gaus-
sian function.

Finally, color information is combined with spatial informa-
tion obtained from the former module. For each pixel classified as
skin, pn

skin, in the view n, 0 ≤ n < N , we check whether

pn
skin ∈ Pn

“

Vk
”

, 0 ≤ k < M, (1)

(a)

H
0

(b)

Fig. 2. Example of the outputs from the spatial analysis and model
fitting modules. In (a), multiview correspondences among heads
are correctly established. The projection of the bounding box B0

containing the head is depicted in white. In (b), voxel reconstruc-
tion is applied to B0 thus obtaining the voxels belonging to the
head (green cubes). Model fitting module result is depicted in red.

where Pn(·) is the perspective projection operator from 3D to 2D
coordinates on the view n [1]. In this way pn

skin can be identified as
being a projection of a voxel of the set Vk and therefore correctly
handled when establishing orientation of multiple heads and faces
in later modules. Let us denote with Sk

n all skin pixels in the n-
th view classified as belonging to the k-th voxel set. It should
be recalled that there could be empty sets Sk

n due to occlusions
or under-performance of the skin detection technique. However,
tracking information and redundancy among views would allow to
overcome this problem.

2.3. Head Model fitting

In order to achieve a good fitting performance, a geometrical 3D
configuration of human head must be considered. For our re-
search work, an ellipsoid model of human head shape has been
adopted. In spite of this fairly simple approximation compared
to more complex geometries of head shape [2], head fitting still
achieves enough accuracy for our purposes (see Fig.2(b) for an
example).

Let Hk = {ck,Rk, sk} be the set of parameters that define
the ellipsoid modelling the k-th detected human head candidate
where ck is the center, Rk the rotation along each axis centered
on ck and sk the length of each axis. After obtaining the set of
voxels Vk belonging to k-th candidate head Hk, the ellipsoid shell
modelling is fit to these voxels. Statistic moment analysis is em-
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Fig. 3. In (a), color and spatial information fusion process scheme.
Pixels in the set Sk

n are back-projected onto the surface of the el-
lipsoid defined by Hk, generating the set S

k
n with its weightening

term αk
n. In (b), result of information fusion obtaining a synthetic

reconstruction of face appearance from images in (c) where the
skin patches are plot in red and the ellipsoid fitting in white.

ployed to estimate the parameters of the ellipsoid from the centers
of the marked voxels thus obtaining a 3D spatial mean V̄k and a
covariance matrix CVk . The covariance can be diagonalized via
an eigenvalue decomposition into CVk = Φ∆Φ>, where Φ is
orthonormal and ∆ is diagonal. Identification of the defining pa-
rameters of the estimated ellipsoid Hk with moment analysis pa-
rameters is then straighforward:

c
k = V̄k, R

k = Φ, s
k = diag(∆). (2)

3. MULTIPLE VIEW COLOR AND SPATIAL
INFORMATION FUSION

Fusion of both color and space information is required in order to
perform a high semantic level classification and estimation of face
orientation. Our information fusion procedure takes as input the
information generated from the low level image analysis for each
person: an ellipsoid estimation Hk of the head and a set of skin
patches at each view belonging to this head {Sk

n}, 0 ≤ n < N .
The output of this technique is a fusion of color and space informa-
tion set denoted as Ωk. Analysis techniques of the data contained
in Ωk are provided in Sec.4.

The procedure of information fusion we define is based on the
assumption that all skin patches {Sk

n} are projections of a region of
the surface of the estimated ellipsoid defining the head of a person.
Hence, color and space information can be combined to produce
a synthetic reconstruction of the head and face appearance in 3D.
This fusion process is performed for each head separately starting
by back-projecting the skin pixels of Sk

n from all N views onto
the k-th 3D ellipsoid model. Formally, for each pixel pk

n ∈ Sk
n,

we compute

Γ
“

pk
n

”

≡ P−1
n

“

pk
n

”

= on + λv, λ ∈ R
+, (3)

thus obtaining its back-projected ray in the world coordinate frame
passing through pk

n in the image plane with origin in the cam-
era center on and director vector v. In order to obtain the back-
projection of pk

n onto the surface of the ellipsoid modelling the
k-th head, Eq.3 is substituted into the equation of an ellipsoid de-
fined by the set of parameters Hk [1]. It gives a quadratic in λ,

aλ2 + bλ + c = 0. (4)

The case of interest will be when Eq.4 has two real roots. That
means that the ray intersects the ellipsoid twice in which case the
solution with the smaller value of λ will be chosen for reasons of
visibility consistency. See a scheme of this process on Fig.3(a).

This process is applied to all pixels of a given patch Sk
n obtain-

ing a set S
k
n containing the 3D points being the intersections of the

back-projected skin pixels in the view n with the ellipsoid surface.
In order to perform a joint analysis of the sets {Sk

n}, each set must
have an associated weighting factor that takes into account the real
surface of the ellipsoid represented by a single pixel in that view
n. That is, to quantize the effect of the different distances from the
center of the object to each camera. This weighting factor αk

n can
be estimated by projecting a sphere with radius r = max(sk) on
every camera plane, and computing the ratio between the appeare-
ance area of the sphere and the number of projected pixels. To be
precise, αk

n should be estimated for each element in S
k
n but, since

the far-field condition

max(sk) ¿ ‖ck − on‖2, ∀n, (5)

is fulfilled, αk
n can be considered constant for all intersections in

S
k
n. A schematic representation of the fusion procedure is de-

picted in Fig.3(a). Finally, after applying this process to all skin
patches we obtain a fusion of color and spatial information set
Ωk = {Sk

n, αk
n,Hk}, 0 ≤ n < N , for every head in the scene.

A result of this fusion is shown in Fig.3(b).

4. HEAD AND FACE ORIENTATION

The final part of our system deals with the identification of head
and face orientation using the output data of the previous fusion
method. The angle of interest to be estimated for our purposes in
a SmartRoom scenario has been chosen as a direction onto the xy
plane. Since this angle gives information about where the people
is looking at in the scene, it can be used for further analysis such
as tracking of attention in meetings [8]. Two methods have been
proposed and tested in this paper in order to estimate the value of
the orientation angle θ̂. The performance of these two estimators
is addressed in Sec.5.

4.1. Weighted centroid

A first estimation method of the orientation angle θ̂ would be the
computation of the weigthed centroid of the fusion data Ωk as

d
k =

1
PN−1

n=0
|Sk

n|

N−1
X

n=0

αk
n

X

pk
n
∈Sk

n

“

p
k
n − c

k
”

, (6)

θ̂k = tan−1
“

d
k
y/dk

x

”

, (7)

where |Sk
n| denotes the number of elements (pixels) in the set.



4.2. Weighted histogram

A more robust estimation of head orientation is based on the com-
putation of a weighted histogram. The sets S

k
n containing the 3D

Euclidean coordinates of the ray-ellipsoid intersections are trans-
formed on the plane θφ, in elliptical coordinates with origin at
ck, describing the surface of Hk. Then, the histogram on the
axis θ over bins of width 2π/L is computed obtaining Hk

n(i),
0 ≤ i < L, for every S

k
n. A weighted histogram is computed

as:

Ĥ
k (i) =

N−1
X

n=0

αk
nH

k
n (i) . (8)

Finally, the estimation of the orientation is found by smoothing the
histogram and computing the maximum over i.

5. RESULTS

In order to evaluate the performance of the proposed fusion method
and the analysis technique, we employed it to determine the head
and face orientation of a person performing a head movement span-
ing 180o. The analysis sequences were recorded with 4 fully cali-
brated wide angle lense cameras in the SmartRoom at UPC with a
resolution of 768x576 pixels at 25 fps (see a sample in Fig.2(a)).

Fusion of the low resolution data obtained from the 4 cameras
was fed into the two face orientation angle estimators thus produc-
ing the results depicted in Fig.4(a). Groundtruth data was labeled
manually in order to compare the performance of the two estima-
tors and both methods showed effective results. It can be seen
that the weighted histogram estimation gives results closer to the
groundtruth due to the dimension reduction and smoothing of the
incoming data. On the other hand, the centroid estimation method
achieves less accurate estimations but is 3:1 less computationally
expensive than the histogram method. Results for multiple people
face orientation algorithm (centroid) in a meeting environment are
shown in Fig.4(b).

Within the scenario of low resolution video sequences where
facial features can not be accurately detected our method proved
to be efficient for our purposes. Finally, it must be pointed out that
the performance of these methods is conditioned by the hair style
and the presence of beard.

6. CONCLUSIONS AND FUTURE WORK

We presented an efficient technique for color and space informa-
tion fusion in a multiple camera views environment. This tech-
nique allows integrating color information coming from different
sources (views) onto an estimated 3D ellipsoid model of the head
thus building up a synthetic reconstruction of the head appearance.
This method has proven to produce reliable and robust data since
this fusion exploits the redundancy among information sources
even with the constrain of low resolution video data.

In this framework, we proposed two algorithms to estimate
the orientation angle of faces in a SmartRoom environment based
on the analysis of the data produced by this fusion method. Both
algorithms have proven to generate reliable results as depicted in
Fig.4(a) and 4(b). While we have yet to match the performance
that existing methods obtain with high quality images, the results
are nonetheless sufficiently accurate to be useful for automated be-
havioral analyses. Real-time performance is achieved at 2 fps in a
1.6Ghz Pentium.

(a)

(b)

Fig. 4. In (a), results of the two face orientation estimators (in
degrees) described in this paper. In (b), multiple face orientation
technique applied to a meeting scene towards attention tracking
(zenital view).

Future research within this topic involve analysis of the fusion
data towards tracking attention of people in meetings and under-
standing behaviors of individuals. Fusion of color, shape and audio
information is currently under research towards multimodal anal-
ysis.

7. REFERENCES

[1] R.I. Hartley and A. Zisserman, Multiple View Geometry in
Computer Vision, Cambridge University Press, 2004.

[2] X. Brolly, C. Stratelos, and J. Mulligan, “Model-based head
pose estimation for air-traffic controllers,” in Proc. IEEE Int.
Conf. on Image Processing, 2003, pp. 113–116.

[3] M. Chen and A. Hauptmann, “Towards robust face recognition
from multiple views,” in Proc. IEEE Int. Conf. on Multimedia
and Expo, 2004.

[4] C. Stauffer and W. Grimson, “Adaptive background mixture
models for real-time tracking,” in Proc. IEEE Int. Conf. on
Computer Vision and Pattern Recognition, 1999, pp. 252–259.

[5] C. Canton-Ferrer, J. R. Casas, and M. Pardàs, “Towards a
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