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ABSTRACT

This paper presents a novel view-independent approach to
the recognition of human gestures of several people in low
resolution sequences from multiple calibrated cameras. In
contraposition with other multi-ocular gesture recognition
systems based on generating a classification on a fusion of
features coming from different views, our system performs
a data fusion (3D representation of the scene) and then a
feature extraction and classification. Motion descriptors in-
troduced by Bobick et al. for 2D data are extended to 3D
and a set of features based on 3D invariant statistical mo-
ments are computed. A simple ellipsoid body model is fit to
incoming 3D data to capture in which body part the gesture
occurs thus increasing the recognition ratio of the overall sys-
tem and generating a more informative classification output.
Finally, a Bayesian classifier is employed to perform recogni-
tion over a small set of actions. Results are provided showing
the effectiveness of the proposed algorithm in a SmartRoom
scenario.

1. INTRODUCTION

Analysis of human motion and gesture in image sequences is
a topic that has been studied extensively [1]. Detection and
recognition of several human centered actions are the basis
of these studies. The current paper addresses the problem of
recognizing gestures of multiple persons in a SmartRoom in
the framework of a motion and human model based analysis
from multiple views. Multiple camera systems have been
used for image and video analysis tasks in SmartRooms,
surveillance, human-computer interfaces and scene under-
standing. From a mathematical viewpoint, multiple view
geometry has been addressed in [9, 11], but there is still
work to do for the efficient fusion of information from redun-
dant camera views and its combination with image analysis
techniques for object detection, tracking and higher semantic
level analysis such as attitudes and behaviors of individuals.

Methods for motion-based recognition of human gestures
proposed in the literature [1] have often been developed to
deal with sequences from a single perspective [2, 4]. Consid-
erably less work has been published on recognizing human
gestures using multiple cameras. Mono-ocular human ges-
ture recognition systems usually require motion to be paral-
lel to the camera plane and are very sensitive to occlusions.
On the other hand, multiple viewpoints allow exploiting spa-
tial redundancy, overcome ambiguities caused by occlusion
and provide 3D position information as well.

From an information processing perspective, most of the
existing approaches to multiple view gesture recognition rely
on information fusion at the feature level. This means that
multiple inputs are separately analyzed to generate a mo-
tion description and then a classification of the gesture is
performed on these data [2, 17]. This paper explores the
complementary approach: first performing a fusion of the
incoming data and then extracting 3D motion description
features to perform classification.
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Figure 1: System flowchart: acquisition, 3D data processing,
motion and body analysis and classification.

In [6], we introduced a method for 3D gesture recognition
which is both robust to environmental conditions and com-
putationally simple for real-time applications. Data fusion is
achieved by exploiting redundancy among camera views to
obtain a 3D representation of the scene. For the recognition
of the movement, an extension of the motion representations
proposed in [2] is presented: Motion History Volume and
Motion Energy Volume. A set of robust 3D invariant statis-
tical moments [15] are computed over motion information as
a feature vector for classification. In this paper, we propose
an extension of the previous action recognition technique
by adding information regarding the position of the human
body limbs. Taking into account that actions are produced
by humans, an ellipsoid body model is fit to the incoming
3D data to capture in which body part the gesture occurs.
This increases the recognition ratio of the overall system and
generates a more informative classification output while still
keeping the algorithm computationally simple for real-time
purposes. Finally, motion and body model features are fed
into a Bayesian classifier. Quantitative results for the pro-
posed algorithm are provided as well as a comparison with
other motion-based gesture recognition systems.

This method has been successfully applied to a multi-
camera SmartRoom scenario in the framework of a scene
understanding project involving recognition of human ges-
tures in meetings. Other fields where our algorithm has po-
tential applicability are interfaces for disabled people, body
and gait analysis or domotics.

2. SYSTEM OVERVIEW

According to the flowchart depicted in Fig.1 the system com-
prises four data processing modules: image acquisition, 3D
data processing, body and motion analysis and feature ex-
traction, and classification.

For a given frame in the video sequence, a set ofN images
are obtained from the N cameras. Each camera is modeled
using a pinhole camera model based on ideal perspective
projection. Accurate calibration information is available.
Foreground regions from input images are obtained using a
segmentation algorithm based on Stauffer-Grimson’s back-



ground learning and substraction technique [18, 13]. This
adaptive algorithm proved to be robust when dealing with se-
quences with light changes in the background. It is assumed
that the moving objects are human people. Segmented im-
ages, encoded as a binary mask, are the input information
for the rest of image analysis modules described here since
no color information is required.

2.1 3D Process Module

Prior to any further image analysis, the scene must be char-
acterized in terms of space disposition and configuration of
the foreground volumes, i.e. people candidates, in order to
select those potential 3D regions where a gesture may ap-
pear. Images obtained from the multiple view camera sys-
tem allow exploiting spatial redundancies in order to detect
these 3D regions of interest. This task is carried out by the
3D processing module as explained below.

Once foreground regions are extracted from the set of
N original images at time t, a set of M 3D points xk,
0 ≤ k < M , corresponding to the top most point of each
3D detected volume in the room is obtained by applying
a robust Bayesian correspondence algorithm and tracking,
as described in [5]. The information given by the established
correspondences allows defining a Region of Interest (RoI)
described by a bounding box Bk, centered on each 3D top
xk with an average size adequate to contain a human can-
didate (see Fig.2(a)). This process allows reducing the com-
plexity of the system discarding empty space regions not to
be analyzed by forthcoming modules. For the sake of clarity,
results presented in this article will refer to a single person
in the scene while still being valid for multiple people.

As mentioned before, our approach to motion-based ges-
ture recognition relies on feature extraction and classification
over a fusion of the incoming information from the N cam-
eras. Let us define a general fusion method from the data
obtained by all N cameras at time instant t as the set

Ω (x, t) =
n

In (x̃, t) ,Bk (x, t) ,R (·)
o

0 ≤ n < N, (1)

where x and x̃ state for 3D and 2D coordinates respectively,
In (x̃, t) is the segmented image captured by n-th camera,
Bk (x, t) are the estimated volume RoIs and function R(·)
denotes the chosen data fusion procedure. In the current
scenario where information present in the N images is orig-
inated by a common real 3D scene captured from different
viewpoints, it is a sound assumption that a good data fusion
process might be the reconstruction of the 3D scene itself.
Other approaches to the 2D to 3D data fusion problem [3]
generate new synthetic views by placing virtual cameras in
an orthogonal coordinate system related with the center of
the action. By working directly on the 3D result of the data
fusion, our approach better captures the information avail-
able from the multiple views avoiding any redundancy on the
data fed to the analyzer.

Taking the data provided by the foreground segmenta-
tion and the RoIs as input, reconstruction of 3D moving ob-
jects in the scene can be achieved by defining R(·) as a robust
Shape from Silhouette process [14]. This process generates
a discrete occupancy representation of the 3D space (vox-
els) deciding whether a voxel is foreground or background
by checking the spatial consistency of the N segmented sil-
houettes. Information derived from the multiple RoIs allows
labeling the voxels as belonging to one person or another.

The data obtained with this 3D reconstruction is cor-
rupted by spurious voxels introduced due to wrong segmen-
tation, camera calibration inaccuracies, etc. The temporal
analysis module placed next in the processing chain highly
depends on the reliability of the data fusion. Isolated voxels
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Figure 2: Example of the outputs from the 3D processing
module in the SmartRoom scenario. In (a), multiview cor-
respondences among regions of interest (RoIs) are correctly
established. In (b), example of the data fusion set Ω (x, t)
used in this paper.

should be removed not to be detected as motion. A connec-
tivity filter is introduced in order to remove these voxels by
checking its connectivity consistency with its neighbors in
both space and time. An example of the output of the whole
3D processing module is depicted in Fig.2(b)

2.2 Motion Analysis Module

In order to achieve a simple and efficient low level view-
dependent motion representation, [2] introduced the concept
of Motion History Image (MHV) and Motion Energy Image
(MEI). This representation has been recently used for mono-
ocular gait recognition tasks [10] and activity modeling [19].
We extend this formulation to represent view-independent
3D motion. In this way, ambiguities generated by occlusions
are overcame. Analogously to [2, 4], the binary Motion En-
ergy Volume (MEV) Eτ (x, t) is defined as:

Eτ (x, t) =
τ−1
[

i=0

ΩD (x, t− i) , (2)

where ΩD(x, t) is the binary data set indicating regions of
motion. This measure captures the 3D locations where there
is motion in the last τ frames. Motion detection captured in
ΩD(x, t) can be coarsely estimated by a simple forward dif-
ferentiation among voxel frames, still leading to satisfactory
results while preserving a reduced computational complexity.
It should be noted that τ is a crucial parameter in defining
the temporal extent of a gesture. In Fig.3(a), an example of
MEV is depicted.
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Figure 3: Example of motion descriptors. In (a) and (b) are
depicted the 2D projections of MEV and MHV respectively
for gestures sitting down and raising hand.

To represent the temporal evolution of the motion, we
define the Motion History Volume (MHV) where each voxel
intensity is a function of the temporal history of the motion
at that 3D location. Formally,

Hτ (x, t) =



τ if ΩD (x, t) = 1
max [0, Hτ (x, t− 1) − 1] otherwise

.

(3)
This particular choice of temporal projection operator has
the advantage that computation is recursive thus being a
good representation for a real-time gesture recognition sys-
tem. An example of MHV is shown in Fig.3(b).

Estimating a right value of the time factor τ (memory
of the system) is critical to extract meaningful features to
perform classification. Start and end of an action can be
estimated adaptively by analyzing the volume activity of
ΩD (x, t): when there is an action starting, motion increases
suddenly thus triggering the MHV computation until a ges-
ture ends and motion activity decreases below a threshold
Ath (see Fig.4).

2.3 Body Analysis Module

In order to extract a set of features describing the body of a
person that performs an action, a geometrical configuration
of human body must be considered. A number of body mod-
els have been proposed in the literature [1, 7] but most of
them rely on computationally intensive minimization pro-
cedures to obtain valid body postures. Since the aim of
our research is to increase robustness of gesture classification
by embedding human body configuration information in our
data analysis loop while keeping real-time performance, an
ellipsoid model of human body has been adopted. In spite of
this fairly simple approximation compared with more com-
plex human body models, classification results proved the
validity of our assumption as shown in Section 4.

Let H = {c,R, s} be the set of parameters that define
the ellipsoid modeling the human body candidate where c
is the center, R the rotation along each axis centered on c
and s the length of each axis. After obtaining the set of
voxels Ω (x, t) describing a given person, we fit an ellipsoid
shell to model it. Statistic moment analysis is employed to
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Figure 4: Estimation of time decay parameter τ of hand wav-
ing action by looking at the volume of the motion detection
set ΩD (x, t).

estimate the parameters of the ellipsoid from the centers of
the marked voxels thus obtaining a 3D spatial mean Ω̄ and
a covariance matrix CΩ. The covariance can be diagonal-
ized via an eigenvalue decomposition into CΩ = Φ∆Φ>,
where Φ is orthonormal and ∆ is diagonal. Identification
of the defining parameters of the estimated ellipsoid H with
moment analysis parameters is straightforward:

c = Ω̄, R = Φ, s = diag(∆). (4)

This information is then fed to the body tracking module
that refines this estimation taking into account body anthro-
pometric restrictions imposing some motion and size con-
straints compatible with human bodies [7]. For example,
the height of a person (largest value of matrix s) restricts
the possible locations of arms and legs according to the av-
erage lengths of body parts. Finally, time consistency of H
parameters is achieved by a Kalman filter.

Once the parameters of the ellipsoid H representing the
human body are computed, a simple body part classification
can be derived. Voxels Ω (x, t) can be labeled as belong-
ing to four categories: left/right-arm/leg (see Fig.5). These
data will be used while performing classification of an action
jointly with motion information.

3. FEATURE EXTRACTION AND GESTURE
CLASSIFICATION

Data produced by the motion and body analysis modules is
processed in order to extract a vector of features for classifi-
cation.

Motion described at a low level using just image process-
ing techniques requires a very high dimensional space to rep-
resent it. Methods to represent motion in a low-dimensional
space are therefore desirable. Hence, informative features de-
rived from the analyzed data (MHV and MEV in our case)
are required. Statistical moments invariant to scaling, trans-
lation, rotation and affine mappings were early introduced by
[12] for character recognition tasks. Their invariance proper-
ties yield to robust and informative features suitable for clas-
sification tasks and have been used in other 2D motion-based
human gesture approaches [2, 4, 17]. The proposed system
extends the usage of invariant moments to be computed over
our data sets as classification features. Nevertheless, since
our system is based on a data fusion prior to the classifica-
tion process, 3D invariant statistical moments are required.
These type of features have been already used in brain tis-
sue classification tasks [16] and can be derived analytically.
The reader is referred to Lo and Don’s method [15] for a de-
tailed description of the construction of invariant statistical
moments of arbitrary dimension. For each data set Eτ (x, t)
and Hτ (x, t), 5 invariant moment-based features are com-
puted. Let us denote the set of these features as ψMEV and
ψMHV.
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Figure 5: Body analysis module output. In (a), original
images for actions quick and rise hand. In (b), voxels be-
longing to the body of the person are labeled as belonging
to right/left-arm/leg categories.

Information from body parts provided by body analysis
module can be used to generate additional features. Ex-
tracted motion features do not capture any information re-
garding in which part of the body the motion has been pro-
duced. Let us call ψBODY the four features describing the
relative amount of motion voxels located in each body part.

Given the computed moment-based motion features and
the body features obtained for each of the actions to classify
ωj , 0 ≤ j < K, we define a full 14-dimensional feature vector
as Γ = [ψMEV ψMHV ψBODY]. Even though the dimension-
ality of Γ is small, empty-space related problems arise when
estimating class distributions [8]. Such effects decrease the
efficiency of classification but this problem can be tackled
by finding a transformed representation of data in a com-
pact reduced dimensional space through Principal Compo-
nent Analysis (PCA) [8]. By analyzing the training data we
noticed that 90% of the variance of the data was achieved
by using a dimension reduction to d = 7. Let us refer to the

data set obtained after PCA analysis as Γ̂.
The classification method is based on a Bayesian clas-

sification criterion assuming that p(Γ̂|ωj) is normally dis-
tributed. Since the noise in our data is the result of the sum
of contributions from a large number of independent sources,
Central Limit Theorem grants consistency to the Gaussian-
ity assumption of our data. Indeed, further empirical tests
[8] corroborate this assumption. Given an observation repre-

sented by Γ̂, its classification is expressed by the maximum
likelihood principle:

arg max
ωj

p
“

ωj |Γ̂
”

, (5)

where the posterior probability of a certain class ωj given an

observation Γ̂ is formally

p
“

ωj |Γ̂
”

=
p

“

Γ̂|ωj

”

p (ωj)

p
“

Γ̂
” . (6)

Since p(ωj) and p(Γ̂) factors are wide and uninformative,

Figure 6: Classifier performance evaluated with motion and
body features depending on the order of the PCA analysis.

Eq.6 can be expressed as

p
“

ωj |Γ̂
”

∝ p
“

Γ̂|ωj

”

, (7)

where p(Γ̂|ωj) is modeled as a multivariate Gaussian dis-
tribution defined by its mean µ and covariance matrix Σ.
Training data is used to estimate (µ,Σ)j for each class in
order to compute the class-likelihood discriminant in Eq.5.

4. RESULTS AND DISCUSSION

In order to evaluate the performance of the proposed al-
gorithm, we collected a set of 70 training and 30 testing
multi-view sequences of each action to be recognized. The
analysis sequences were recorded with 5 fully calibrated and
synchronized wide angle lenses cameras in the SmartRoom
at UPC with a resolution of 768x576 pixels at 25 fps (see a
sample in Fig.2(a)). The gesture category set was formed by
8 common actions of interest in the field of human-computer
interfaces such as raising hand, sitting down, waving hands,
crouching down, standing up, punching, kicking or jumping.
Moreover, to show the effectiveness of our method and its ro-
bustness against rotations, occlusions and position, actions
were recorded in different positions inside the room and fac-
ing various orientations.

Quantitative results shown in Table 1 prove the efficiency
of the proposed algorithm to recognize human gestures from
the given dataset. In average, we got a p(error) = 0.0154.
Experiments have been carried out with and without these
features to show the influence of body parts features in the
overall performance. Fig.6 depicts the behavior of the classi-
fier for diverse orders of the PCA analysis showing that body
features increase the performance of the system.

Multiple view motion-based recognition of gesture is
commonly addressed by the complementary information pro-
cessing paradigm relying on feature fusion and classification.
For general comparison purposes, we took the results pro-
vided in [17, 2] where the alternative approach to multi-
ocular recognition of gestures is analyzed. Even though test
databases are not the same, both contain similar actions.
In comparison, the approach presented in this paper achieve
lower error ratios. Moreover, our system has the advantage
that no assumptions on the position and the orientation of
the person are required due to the data fusion process. How-
ever, our method is conditioned by the initial foreground
segmentation step thus being sensitive to the colors of the
clothes of the people in the scene.



Table 1: Confusion matrix indicating the p(error) of the
Bayesian classifier when using both motion and body fea-
tures for classification.

ω0 ω1 ω2 ω3 ω4 ω5 ω6 ω7

ω0 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ω1 0.0 - 0.0 0.006 0.0 0.0 0.0 0.0
ω2 0.0 0.0 - 0.010 0.0 0.0 0.0 0.0
ω3 0.0 0.0 0.0 - 0.0 0.0 0.0 0.0
ω4 0.0 0.0 0.0 0.0 - 0.0 0.0 0.0
ω5 0.0 0.0 0.0 0.0 0.107 - 0.0 0.0
ω6 0.0 0.0 0.0 0.0 0.0 0.0 - 0.0
ω7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -

5. CONCLUSIONS AND FUTURE WORK

We presented an efficient technique for motion-based view-
independent gesture recognition in a multiple camera view
environment. This paper explores the information processing
methodology based on first performing a fusion of the incom-
ing data and then extracting 3D motion description features.
Classification is performed by jointly analyzing motion fea-
tures and body position data obtained by fitting an ellipsoid
body model.

Information provided by multiple views originated from
the same real 3D world is better captured when being ana-
lyzed by a data-level fusion instead of a feature-level fusion.
Experimental results proved the efficiency of our method
proposing an alternative to the classical methodology to
multi-ocular and mono-ocular motion-based gesture analy-
sis [2, 17, 4]. Moreover, information regarding body parts
position increases robustness of the overall system and gen-
erate a more informative classification output.

Future research within this topic involve developing more
data fusion strategies involving color to generate informa-
tive descriptions of motion. More sophisticated classification
techniques and 3D color related features are under research.
The obtained data, allowing distinction among left/right and
arm/leg as well as the classified action might be used by
higher semantic analysis modules to analyze more complex
and structured actions. Current research aims at using more
detailed articulated body models that would lead to better
classification results.
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