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Abstract. This paper presents two approaches to the problem of si-
multaneous tracking of several people in low resolution sequences from
multiple calibrated cameras. Spatial redundancy is exploited to generate
a discrete 3D binary representation of the foreground objects in the scene.
Color information obtained from the zenithal view is added to this 3D in-
formation. The first tracking approach implements heuristic association
rules between blobs labelled according to spatiotemporal connectivity
criteria. Association rules are based on a cost function which considers
their placement and color histogram. In the second approach, a particle
filtering scheme adapted to the incoming 3D discrete data is proposed. A
volume likelihood function and a discrete 3D re-sampling procedure are
introduced to evaluate and drive particles. Multiple targets are tracked
by means of multiple particle filters and interaction among them is mod-
eled through a 3D blocking scheme. Evaluation over the CLEAR 2007
database yields quantitative results assessing the performance of the pro-
posed algorithm for indoor scenarios.

1 Introduction

The current paper addresses the problem of detecting and tracking a group of
people present in an indoor scenario in a multiple camera setup. Robust, multi-
person tracking systems are employed in a wide range of applications, including
SmartRoom environments, surveillance for security, health monitoring, as well
as providing location and context features for human-computer interaction.

A number of methods for camera based multi-person 3D tracking have been
proposed in the literature [5]. A common goal in these systems is robustness
under occlusions created by the multiple objects cluttering the scene when esti-
mating the position of a target. Single camera approaches [8] have been widely
employed but are more vulnerable to occlusions, rotation and scale changes of the
target. In order to avoid these drawbacks, multi-camera tracking techniques [2]
exploit spatial redundancy among different views and provide 3D information
as well. Integration of features extracted from multiple cameras has been pro-
posed in terms of image correspondences [3], multi-view histograms [10] or voxel
reconstructions [6].
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We propose two methods for 3D tracking of multiple people in a multi-camera
environment. Redundancy among cameras is exploited to obtain a binary 3D
voxel representation of the foreground objects in the scene as the input of the
tracking system. The first approach processes the information as follows: a time-
consistent label is assigned to each blob corresponding to a person in the room
and the 3D position of the person is updated at every frame. All the processing
in this step is performed using heuristic criteria such as closest blob, most similar
color, etc.

Filtering techniques may also be employed to add temporal consistency to
tracks. Kalman filtering approaches have been extensively used to track a single
object under Gaussian uncertainty models and linear dynamics [8]. However,
these methods do not perform accurately when facing noisy scenes or rapidly
maneuvering targets. Particle filtering has been applied to cope with these sit-
uations since it can deal with multi-modal pdf s and is able to recover from
lost tracks [1]. In the second proposed tracking system, a particle filter is im-
plemented to track a target estimating its 3D centroid and no motion model
has been assumed to keep a reduced state space. Particle weights are evaluated
through a volume likelihood function measuring whether a particle falls inside or
outside a volume. A 3D discrete re-sampling technique is introduced to propa-
gate particles and to capture object shifts. Multiple targets are tracked assigning
a particle filter to every one. In order to achieve the most independent set of
trackers, we consider a 3D blocking method to model interactions. It must be
noted that this second tracking system with particle filtering has been already
introduced in [4].

Finally, effectiveness of the proposed algorithms is assessed by means of ob-
jective metrics defined in the framework the CLEAR07 [7] multi-target tracking
database.

2 System Overview

This section aims to describe in a brief manner the main blocks composing
our multi-person tracking system. The input data are images captured by five
calibrated cameras and their respective calibration data. Four of those cameras
are placed at the corners of a meeting room and the fifth is installed as a zenithal
camera.

The first block in our system is an adaptive foreground segmentation block
based on the Stauffer-Grimson method [12] applied over each of the input images.
It consists of two different working phases: the initialization step, when the
segmentation algorithm does not know yet the contents of the background and
the adaptive loop, when some model of the background has already been acquired
but it still needs to be updated to cope with phenomena such as slow ambient
light variations.

After this first block, a Shape from Silhouette algorithm applied on the ob-
tained foreground masks delivers a 3D reconstruction of the foreground in the
instantaneous scene by testing voxel occupancy over the available foreground



Multi-Person Tracking Strategies Based on Voxel Analysis 3

masks coming from each camera. In order to obtain useful foreground volumes,
voxel visibility over each camera is used to allow the classification as foreground
of voxels out of the common visibility volume for the five cameras.

The third and final block consists in the tracking of 3D connected compo-
nents, or blobs. This block gets 3D binary foreground volumes from the previous
Shape from Silhouette stage and the color image from the zenithal camera to
perform a tracking based on both available kinds of information. Two systems
are proposed based on this visual information. The first approach process the
information as follows: a time-consistent label is assigned to each blob corre-
sponding to a person in the room and the 3D position of the person is updated
at every frame. In this approach, a cost function based on heuristic criteria such
as closest blob, most similar color, etc. is used to solve the tracking temporal
correspondence problem. The second approach employs a particle filtering strat-
egy using only the information coming from the reconstruction (thus not taking
into account color information). A particle filter is assigned to each person and
connectivity criteria are employed to drive the particles. Finally, an exclusion
criteria is employed to separate particles among different filters.

2.1 Foreground Segmentation

During initialization, the method needs to be fed with images containing only
background elements, such as a table used during a meeting, whiteboards, chairs
in their original position, etc. The initial algorithm estimates both the mean
YUV values of every pixel of the background and their variances, assuming a
single modal Gaussian behavior for each pixel.

The adaptive loop can also be divided in two phases: firstly it decides whether
to classify a pixel in an image as belonging to the background or the foreground
of the scene by using the available Gaussian model. The decision of belonging
to the foreground will only be taken when the difference in chrominance with
respect to the mean in the Gaussian model is higher than a threshold computed
from the variance of the latter and the pixel’s luminance is below a certain
threshold, because of the unreliability of the chrominance vector for high lumi-
nance values. The second phase consists in updating the Gaussian model for each
pixel classified as background with the new data from the current frame. Thus,
the foreground segmentation is able to adapt to slight variations in the light
condition of the captured sequence by continuously learning the background.

2.2 Shape from Silhouette

Before the actual tracking step, a 3D model of the foreground of the scene is
obtained as the result of a Shape from Silhouette (SfS) algorithm delivering vox-
elized foreground blobs from a set of foreground segmentation masks of calibrated
cameras’ images. Such algorithm applies a consistency check on the projection of
the elementary spatial analysis unit (a voxel in this case) over the five available
cameras to obtain the analysis result for each spatial sample. In this case, the
test consists in checking if the analyzed voxel can be considered as part of the
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foreground by observing if the content of the foreground masks in the area of
projection of the voxel is part of the foreground.

For simplicity, the consistency check of the algorithm only uses the projection
of voxels’ geometrical centers over the five available cameras. To speed up the
execution time, a look-up table (LUT) containing the pixel coordinates of the
projection of every voxel center on every camera image is generated using the
calibration data previously to the actual analysis. Another LUT, containing the
camera visibility for every voxel in a completely empty space is computed for
the visibility-aware consistency check.

Finally, a non-linear function is applied to decide whether a voxel is occupied
by a foreground element. Using camera visibility in the consistency check, a voxel
is considered as part of the foreground if:

1. The voxel is seen by all five cameras and the consistency check over the five
cameras is positive

2. The voxel is seen by only four cameras and the consistency check over the
four cameras is positive

3. The voxel is seen by only three cameras and the consistency check over the
three cameras is positive

Otherwise, the voxel is considered as part of the background. This technique
delivers 3D models for the foreground of the scene with enough accuracy, even
in areas with low camera visibility, thanks to the visibility LUT. Effects such as
occlusion by background elements, i. e. tables or chairs, is not correctly treated by
this approach, but as mentioned above the obtained results are enough accurate
to our target application.

3 Heuristics Based Tracking

The heuristic tracker receives the binary 3D voxelized blobs from the Shape from
Silhouette step as well as the camera images from the zenithal camera. As a first
step, an analysis of connected components on the input volume is applied in
order to get an identification label for each blob. Spurious foreground voxels are
also removed in this first step.

3.1 Blob classification

For each blob, its volume, the position of its centroid and its height are com-
puted to obtain a first classification for the foreground blobs of the scene. This
classification takes into account the following rules:

1. If the blob has a volume smaller than a given threshold, it is considered as
an object, otherwise it is marked as a person

2. If the blob is marked as a person and it is taller than a certain height (140
cm), the blob is marked as a standing person, otherwise it is marked as a
sitting person
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3.2 Color model for blobs

In addition to the extracted features mentioned above, a color model of the
blob is obtained from the information contained in the image from the zenithal
camera. Keeping in mind that our system is designed to be fast enough to deliver
results for applications running in real-time, we decided to create a color model
using only the color of a layer of voxels of each blob. In addition, we also wanted
those layers to be as much populated as possible. This condition took us to the
decision of choosing a layer of voxels at a height of 100 cm for sitting persons
and 150 cm for standing persons, heights at which the areas of the sections of the
body in those gestures present high values. Thus, in the case of blobs classified
as a sitting person, the color model is obtained from the projection over the
zenithal camera of the centers of the voxels at a height of 150 cm. Similarly the
sampling of the sitting person is obtained from the voxels at 100 cm of height.

The color model obtained through the mentioned sampling is a RGB his-
togram with a parametric number of bins. In our tests, 16 bins delivered the
best results.

3.3 Tracking

The tracking algorithm is based on the application of heuristic rules. Once the
relevant features (blob classification, color model) have been extracted, a cost
function is computed from the available data from tracked blobs in the previous
instant and (candidate) blobs in the current time instant.

Firstly, a marginal cost is computed as the 2D euclidean distance between
each pair of tracked and candidate blobs. If the distance is shorter than a certain
speed times the time difference between frames, assuming that such speed is the
maximum speed of a person in a meeting room, this first marginal cost is set to
zero. Otherwise, if the distance is longer than the maximum distance but smaller
than twice such maximum distance, a cost is set from the formula [distance /
mindistance - 1]. If the distance is larger than twice the maximum distance, the
cost is set to 1. Thus, the marginal cost for the euclidean distance is set as a value
comprised in the range [0, 1]. This extension to the maximum possible speed of
a person (up to twice the expected value) is aimed to balance the effects of blobs
merging, usually implying a very high speed of blobs’ centroids.

A second marginal cost is computed as the 1-complementary of the Bhat-
acharyya distance computed from the histograms of each pair tracked-candidate,
resulting in a value also comprised in the range [0, 1], although in general the
dynamic range of this type of distance is much smaller than the whole range.

With those two marginal costs and the remaining information from the blob
classification (blobs’ volumes), a cost table is generated computing the potential
association among any two candidate blobs from two sequential frames. If a
tracked blob has only one candidate blob with a distance cost smaller than 1,
then the marginal cost for the euclidean distance is used for all the pairs formed
with this tracked blob. If there are several candidates with a distance cost smaller
than 1 for a given tracked blob, then for those tracked-candidate pairs the color
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marginal cost is used instead of the distance cost. Furthermore, if the candidate is
classified as an object instead of as a person, a penalty is applied by multiplying
by 2 the color cost.

When the cost table is filled in, the candidate blob with less cost is assigned
to each tracked. If a candidate is assigned to more than one tracked blob, then
a special group ID is added to the label of each of the tracked blobs to allow a
correct later separation. Otherwise, if a candidate is only assigned to one tracked
blob, the color model for that tracked is updated by averaging its previous his-
togram with the candidate’s one. If a candidate is not assigned to any tracked
blob and the blob classification reported it as being a blob from a person, a new
tracked is added to the list with copying the data from the feature extraction.
Finally, if a candidate does not have any matching candidate (cost smaller than
1), it is removed from the list of tracked blobs.

4 Particle Filtering Applied to 3D Tracking

Particle Filtering (PF) is an approximation technique for estimation problems
where the variables involved do not hold Gaussianity uncertainty models and
linear dynamics. The current tracking scenario can be tackled by means of this
algorithm to estimate the 3D position of a person xt = (x, y, z)t at time t,
taking as observation a set of binary voxels representing the 3D scene up to time
t denoted as z1:t. Multiple people might be tracked assigning a PF to each target
and defining an interaction model to ensure track coherence.

For a given target xt, PF approximates the posterior density p(xt|z1:t) with
a sum of Ns Dirac functions:

p (xt|z1:t) ≈

Ns
∑

j=1

wj
t δ(xt − x

j
t ), (1)

where wj
t are the weights associated to the particles and x

j
t their positions. For

this type of tracking problem, a Sampling Importance Re-sampling (SIR) PF
is applied to drive particles across time [1]. Assuming importance density to be
equal to the prior density, weight update is recursively computed as:

wj
t ∝ wj

t−1
p(zt|x

j
t ). (2)

SIR PF avoids the particle degeneracy problem by re-sampling at every time
step. In this case, weights are set to wj

t−1
= 1/Ns, ∀j, therefore

wj
t ∝ p(zt|x

j
t ). (3)

Hence, the weights are proportional to the likelihood function that will be com-
puted over the incoming volume zt as defined in Sec.4.1. The re-sampling step
derives the particles depending on the weights of the previous step, then all the
new particles receive a starting weight equal to 1/Ns which will be updated by
the next volume likelihood function.
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Finally, the best state at time t of target m, Xm
t , is derived based on the

discrete approximation of Eq.1. The most common solution is the Monte Carlo
approximation of the expectation as

Xm
t = E [xt|z1:t] ≈

1

Ns

Ns
∑

j=1

wj
t x

i
t. (4)

The major limit of PF, and specially SIR ones, is the capability of the particle
set of representing the pdf when the sampling density of the state space is low.
Scenarios with high number of degrees of freedom require a large number of
particles to perform an efficient estimation with the consequent increase in terms
of computational cost. An unnecessary computational load could appear with a
number of particles larger than required.

Up to authors knowledge, the novelty of the proposed of scheme is to employ
the minimum unit of the scene, the voxel, to redefine state space sampling. Being
our volume a discrete representation, particles are constrained to occupy a single
voxel and move with displacements on the 3D discrete orthogonal grid.

4.1 Likelihood Evaluation

Function p(zt|xt) can be defined as the likelihood of a particle belonging to the
volume corresponding to a person. For a given particle j occupying a voxel, its
likelihood may be formulated as

p(zt| x
j
t ) =

1

|C(xj
t , q)|

∑

p∈C(x
j
t

,q)

d(xj
t ,p), (5)

where C(·) stands for the neighborhood over a connectivity q domain on the 3D
orthogonal grid and |C(·)| represents its cardinality. Typically, connectivity in 3D
discrete grids can be 6, 14 and 26 and in our research q = 26 provided accurate
results. Function d(·) measures the distance between a foreground voxel p in the
neighborhood and the particle.

Ideally, particles placed inside the volume of the target achieve maximum
likelihood while those being on the surface of the volume attain a non-zero
value. Volumes belonging to people would be completely solid but, in practice,
there are holes introduced as the effect of segmentation inaccuracies during the
SfS reconstruction.

4.2 3D Discrete Re-sampling

The re-sampling step has been defined according to the condition that every
particle is assigned to a foreground voxel. In other words, re-sampling has usu-
ally been defined as a process where some noise is added to the position of the
re-sampled particles according to their weights [1]. The higher the weight, the
more replicas will be created. In our current tracking scenario, re-sampling adds
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some discrete noise to particles only allowing motion within the 3D discrete po-
sitions of adjacent foreground voxels as depicted in Fig.1a. Then, non populated
foreground voxels are assigned to re-sampled particles. In some cases, there are
not enough adjacent foreground voxels to be assigned, then a connectivity search
finds closer non-empty voxels to be assigned as shown in Fig.1b.

(a) (b)

Fig. 1. Discrete re-sampling example (in 2D).

No motion model has been assumed in the space state in order to keep a
reduced dimensionality of our estimation problem. However, object translations
are captured within the re-sampling step by means of this particle set expansion
leading to satisfactory results.

4.3 Multi-Person PF Tracking

Challenges in 3D multi-person tracking from volumetric scene reconstruction
are basically twofold. First, finding an interaction model in order to avoid miss-
matches and target merging. The second is filtering spurious objects that appear
in scene reconstruction and discarding non-relevant objects such as chairs or
furniture. This last problem is managed by the last module of the system that
performs a higher semantic analysis of the scene.

Several approaches have been proposed [2, 10] but the joint PF presented
in [9] is the optimal solution to multi-target tracking using PFs. However, its
computational load increases dramatically with the number of targets to track
since every particle estimates the location of all targets in the scene simulta-
neously. The proposed solution is to use a split PF per person, which requires
less computational load at the cost of not being able to solve some complex
cross-overs. However, this situation is alleviated by the fact that cross-overs are
restricted to the horizontal plane in our scenario (see Fig.2a).

Let us assume that there are M independent PF trackers, being M the num-
ber of humans in the room. Nevertheless, they are not fully independent since
each PF can consider voxels from other tracked targets in both the likelihood
evaluation or the 3D re-sampling step resulting in target merging or identity
missmatches. In order to achieve the most independent set of trackers, we con-
sider a blocking method to model interactions. Many blocking proposals can
be found in 2D tracking related works [9, 11] and we extend it to our 3D case.
Blocking methods penalize particles that overlap zones with other targets. Hence,
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(a) (b)

Fig. 2. Particles from the tracker A (yellow ellipsoid) falling into the exclusion zone of
tracker B (green ellipsoid) will be penalized by a multiplicative factor α ∈ [0, 1].

blocking information can be also considered when computing the particle weights
as:

wj
t =

1

Ns

p(zt|x
j
t )

M
∏

k=1
k 6=m

β
(

Xm
t−1

, XM
t−1

)

, (6)

where M is the total number of trackers, m the index of the evaluated tracker
and X is the estimated state. Term β(·) is the blocking function defining exclu-
sion zones that penalize particles that fall into them. For our particular case,
considering that people in the room are always sitting or standing up (this is a
meeting room so we assume that they never lay down), a way to define an exclu-
sion region modeling the human body is by using an ellipsoid with fixed x and y
axis. Axis in z is a function of the estimated centroid height. An example of this
exclusion technique is depicted in Fig.2. Tracked objects that come very close
can be successfully tracked even though their volumes have partially merged.

4.4 Parameter tunning

Two parameters drive the performance of the algorithm: the voxel size ν and
the number of particles NP . Experiments carried out explore the influence of
these two variables on the MOTP and MOTA scores as depicted in Fig.3. This
plot shows how scenes reconstructed with a large voxel size do not capture well
all spatial details and may miss some objects thus decreasing performance of
the tracking system. Furthermore, the larger the number of particles the more
accurate the performance of the algorithm; however, no substantial improvement
is achieved for more than 600 particles due to the restriction imposed that every
particle occupies the size of one voxel. Visual results of these effects are depicted
in Fig.4.

This experiments allowed setting the two defining parameters of the algo-
rithm for the test phase as follows: ν = 3 and NP = 300.
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Fig. 3. PF tracking system performance. MOTP and MOTA scores for various voxels
sizes and number of particles. Low MOTP and high MOTA scores are preferred indi-
cating low metric error when estimating multiple target 3D positions and high tracking
performance.

5 Results and Conclusions

Results for the two proposed systems are shown in Table 1. The PF tracker
obtains a better performance over the heuristic tracking system in terms of
misses, false positives and missmatches. This effect is acchieved since the PF
keeps information about the multimodal structure of the pdf of the tracked object
rendering it more robust to poor observations, even if no color information is
taken into account in this case. Obviously, the introduction of color features for
the PF tracker is the next target in our future work.

System MOTP m fp mme MOTA

Heuristic Tracker 168 27.74% 40.19% 1.58% 30.49%
PF Tracker 147 13.0% 7.78% 0.79% 78.36%

Table 1. Quantitative results with voxel size of 3 cm. Legend: misses (m), false positives
(fp) and mismatches (mme).
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(a) Experiments with ν = 5cm and ν = 2cm. 300 particles
employed.

(b) Experiments with 100 and 300 particles. Voxel size set to
ν = 2cm.

Fig. 4. PF tracking system zenital view of two comparative experiments. In (a), two
tracking runs showing that large voxel reconstructions miss some objects. In (b), two
tracking runs in a scene involving sudden motion showing how a reduced number of
particles filter lose track of one target.
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3. Canton-Ferrer, C., Casas, J.R., Pardàs, M.: Towards a Bayesian Approach to Robust
Finding Correspondences in Multiple View Geometry Environments. LNCS 3515:2,
pp. 281–289, 2005.
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