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ABSTRACT

This paper presents a multimodal approach to head poseagistim
and 3D gaze orientation of individuals in a SmartRoom emviro

ment equipped with multiple cameras and microphones. We fir
introduce the two monomodal approaches as reference. &oyid

we estimate head orientation from color information by ekjpig
spatial redundancy among cameras. Audio information isqssed
to estimate the direction of the voice produced by a speala+ m
ing use of the directivity characteristics of the head ragimpat-
tern. Two multimodal information fusion schemes workingdata
and decision levels are analyzed in terms of accuracy anastob
ness of the estimation. Experimental results conducted thes
CLEAR evaluation database are reported and the comparfsbe o
proposed multimodal head pose estimation algorithms \aihréf-
erence monomodal approaches proves the effectiveness pfdh
posed approach.

In this paper we present two multimodal fusion algorithnme-ai
ing to estimate the head pose using audiovisual informatibime
proposed architecture combines data and features extrota a
former system from the authors based on video [5] and a noetiad

Susing exclusively acoustic signals from a small set of npbianes.

In the monomodal video system the estimation is performefitby
ting a 3D reconstruction of the head combining the views fi@m
calibrated set of cameras. Audio head orientation is baseth®
fact that the radiation pattern of the human head is frequdapen-
dent. Within this context, we propose a method for estingative
orientation of an active speaker using the ratio of energlifferent
bands of frequency.

The remainder of this paper is organized as follows. In the ne
section we introduce the monomodal video head pose estimati
Section 3, we present the audio single modality system fealsgr
orientation estimation. In Section 4 we propose two methodsgse
audio and video modalities combining the estimations ptediby

Index Terms— Data fusion, Head orientation, Speaker orienta-each system at the data and decision levels. In the followéty

tion, multi-camera image analysis

1. INTRODUCTION

In recent years, significant research efforts have beentetvo the
development of human-computer interfaces in intelligentiren-
ments aiming at supporting humans in various tasks andtisitisa
The head orientation of a person provides important cluesder
to give a better service in such scenarios. This knowledgevsla
better understanding of what users do or what they refentappli-
cations that require human-computer interaction, aceuraad pose
estimation can be used to give personalized informatiohgasers,
for instance through a monitor or a beamer displaying teknages
directly targeting their focus of attention. Moreover, atlechnolo-
gies such as Face ldentification or Automatic Speech Retogni
could exploit available head orientation information antpiove
their performance by selecting a subset of sensors (carartasi-
crophones) adequately located for the task.

Previous approaches to estimate the head pose have maxdly us

video technologies [1, 2]. The estimation of head orientabased

on audio is a very new and challenging task. An early work on
speaker orientation based on acoustic energy was definegl,in [

which was using a large microphone array consisting in heohlr
of sensors surrounding the environment. The Oriented GIGba

herence Field (OGCF) method has been proposed in a recekt w

[4], which is a variation on GCF acoustic localization algum.

This material is based upon work partially supported by tB& pro-
gramme of the EU through the IP IST-2004-506909 CHIL, by TE®@2
01914 and TIN-2005-08852 projects of the Spanish Goveramen

tion, the performance obtained by each system is discusstdia
conclude the paper in Section 6.

2. VIDEO HEAD POSE ESTIMATION

Methods for head pose estimation proposed in the literdfdrase

to follow a general approach that involves estimating thsitmm

of specific facial features in the image (typically eyes,trilzsand

mouth) and then fitting these data to a head model. In prasticee
of these methods might require manual initialization angl [air-
ticularly sensitive to the selection of feature points. Btorer, near-
frontal views are assumed and and high-quality images aitabie.

For the applications addressed in our work, such condigmesisu-
ally difficult to satisfy. Methods which rely on a detailedatare
analysis followed by head model fitting would fail under thesr-

cumstances.

Most of the existing approaches are based on monocular-analy
sis of images but few have addressed the multi-ocular casade
or head analysis [5]. In this context, appearance-baseagipes
[2] tend to achieve satisfactory results with low resolntimages.
However, since head orientation estimation is posed assaifila
cation problem, output angle resolution is limited to a rése set.

OJi’ypically, 8 categories are employed [6] thus leading tosalgtion

of 45°. When performing a multimodal fusion, informative video
outputs are desired, thus preferring data analysis methomsd-
ing a real valued angle output. The next subsection revidwes t
monomodal visual approach presented in [5].



2.1. Multi-view Head Pose Estimation

Since the aim of this work is to determine head orientatios sep-
arate this task from the task of head localization. Theseftire 3D
position of the head of the person of interest is assumed koden
and determined by a bounding b@x already available as an input
to the head orientation algorithm. Automatic 3D head deiadn
multi-view sequences has been addressed in our previoearoes
[7]. The center and size of the bounding bBxallow defining an
ellipsoid model of the hea#{ as shown in Fig.1a.

Color information withini3 is processed to extract skin colored

pixels in every image by mean of a classifier that learns thtistits
of the skin color. Let us denote withi, all pixels classified as skin

in the n-th view. It should be noted that there could be empty sets

S, due to occlusions or poor performance of the skin classifiar.
example of skin classification is shown in Fig.1a.

In order to estimate face orientation, we assume that afl ski

patches{S,}, 0 < n < N, are projections of a region of the sur-
face of the estimated ellipsoid defining the head of a persiemce,
color and space information are combined to produce a stjottee
construction of the head and face appearance in 3D. Thic@ac
plished by back-projecting the skin pixels &f, from all N views
onto the 3D ellipsoid model. Formally, for each pixs] € S,,, we
compute

I'(pn) @)

thus obtaining its back-projected ray in the world coorténgame

P (pn) = 0n + Av, AeRT,

passing through,, in the image plane with origin in the camera cen-

tero,, and director vectox. Term P, (-) is the perspective projec-
tion operator from 3D to 2D coordinates on the viewA scheme
of this process is shown in Fig.1c. This information is cdeséd

©

Fig. 1. In (a) skin patches are plotted in red and the ellipsoidhfitti
in white and in (b), result of information fusion obtainingsgn-
thetic reconstruction of face appearance from images. )inc(dor
and spatial information fusion process scheme. Pixelsdrs#is,,
are back-projected onto the surface of the ellipsoid defimned,
generating the sef,, with its weighting tern,, .

by the setS,, containing the 3D points. An associated weighting very efficient in terms of computational load due to its siizip} and
factor «,, takes into account the actual surface of the ellipsoid repalso does not require a large aperture microphone arrayea®ps

resented by a single pixel in view in order to quantize the effect
of the different distances from the center of the object whezam-
era. These weights are normalized such Y~ o, = 1. Fi-
nally, after applying this process to all skin patches weivba set
Q= {8n,an,H}, 0 <n < N, combining color and spatial infor-

works [3]. All results described in this work were derivedngsonly
a set of four T-shaped 4-channel microphone clusters. $iirecaim
of this research is to determine head orientation, we wsilia®se that
the active speaker’s location is known beforehand. Rolpesler
localization in multi-microphone scenario has been addg$n our

mation. Tracking over time is performed by a Kalman filter. An previous reseach [8].

example of this fusion is shown in Fig.1b.

2.2. Head and Face Orientation

Head and face orientation is computed from thefeThe angle to
be estimated for our purposes in the SmartRoom scenariog®as b
chosen as a direction onto thg plane. The orientation ang&s/ is
estimated by the computation of the weighted centroid oftk&®n
data() as

N-1
1
Zn:() Sn' n=0 PnESn
0v = tan"'(dv,/dv,), @)

3.1. Head Radiation

Human speakers do not radiate speech uniformly in all doest In

general, any sound source (e.g. a loudspeaker) has a cadiatitern
determined by its size and shape and the frequency distibot the

emitted sound. Like any acoustic radiator, the speaker&ctivity

should increase with frequency and mouth aperture. Howéver
radiation pattern is time-varying during normal speechdpmtion,

being dependent on lip configuration. There are works tlyatatr
simulate the human radiation pattern [9] and other worksahau-

rately measure the human radiation pattern, showing tiereifces
for male and female talker and using different languagesnagigh

and French [10].

Fig.2a shows the A-weighted typical radiation pattern ofua h

where|S .| denotes the number of elements (3D intersections) in thep g speaker in horizontal plane passing through his moutiis T

set andc is the center of the heal. Results for this technique have
been reported in [5].

3. MULTI-MICROPHONE HEAD POSE ESTIMATION

In this section we present a new monomodal approach for astign
the head orientation from acoustic signals. The proposetiades

radiation pattern shows an attenuation of -2dB on the sidéhef
speaker g0° or 270°) and -6dB at his back. Similarly, the vertical
radiation pattern is not uniform, e.g. there is about -3dBratation
above the speaker head.

The knowledge of the human radiation pattern can be used to es
timate the head orientation of an active speaker by simpiyding
the energy received at each microphone and searching thethag
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Fig. 2. In (a), A-weighted head radiation diagram in the horizbnta on the video system and the audio information is incorpdréaethe
plane. In (b), HLBR of the head radiation pattern. corresponding video estimates in a multimodal fusion Eec#&his
is achieved by first synchronizing the audio and video esémand

best fits the radiation pattern with the energy measures. eMery  fusing the two sources of information.
this simple approach has several problems since the miongsh Two methods for combining Audio and Video single modalities
should be perfectly calibrated and different attenuatipeagh mi-  are proposed. First, combining the estimations at a Detisével
crophone due to propagation must be accounted for, thusrirggu by means of a decentralized Kalman filter, and secondiynfusie
the use of sound propagation models. In our approach, weseop two sources of information at Data Level.
to keep the computational simplicity by using acoustic gneror-
malization to solve the aforementioned problems. 4.1. Decision Level Fusion

The energy radiated at 200Hz by an active speaker is low di-
rectional, however, for frequencies above 4kHz the ramliapat-  The decentralized Kalman filter [11] is used for the fusioraoélio
tern is highly directive [10]. We make use of this fact to defthe  and video position estimates. As shown in Fig.3, the systam ¢
High/Low Band Ratio (HLBR) of a radiation pattern. The HLBR 0 be divided in two modules associated with the audio and viyse
a radiation pattern is deflned as the ratio between high mbmds tems. Each modality computes a local a-posteriori estiﬂlajk| k;]’
of frequencies of the radiation pattern and can be obsenB®izb.  j 1x/x] of the person head orientation using a local Kalman filter

Instead of computing the abs_olute energy r_ecelved at each M{KF1 and KF2, respectively), based on the correspondingrohs
crophone, the HLBR of the acoustic energy is estimated ftiean-  iong g, (4], 6y [k]. These partial estimates are then combined to
s, T vl b ectcomparal sross al MGOBEEICE: v ol state ety 1) e sion siep

! anopag The global estimate of the system state is obtained by wiaght

tion losses are cancelled. the global and local state estimate with the global erroadence
matrix P asas[k|k] and their counterpartP 4 [k|k] and Py [k|k] at
the audio and video systems.

3.2. Orientation Estimation

As for the visual case, we assume that the active speakeesidn
is known beforehand and determineddnd the vector; from the
speaker to each microphone; is calculated. Each vecter forms
an anglet; with the z-axis in thexy plane. We define a function Multimodal data fusion at data level has been achieved ¢giito

W (0) that relates the HLBR of acoustic energy at each microphoneaccount that speech is produced by the frontal part of the. Hake
denoted byw; with each anglé;. Weightsw; are normalized ful-  propose a modification of the presented monomodal videmieah
filing >>7" , wn, = 1. The estimated speaker orientation can bein order to include the HLBR of the acoustic energy functidi(d)
computed by searching the angle that maximizes the cdoelaé-  from Eq.4. Vectors; going from the head center to each micro-
tween the HLBR of a radiated patte@(¢) and the HLBR of the  phone intersect the ellipsoid head modélin several 3D points

4.2. Data Level Fusion

acoustic energy measured at each microphone. defined by the sed. The points having lowest HLBR of acous-
Nuyres tic energy are rejected since we expect them to be associdtied
wo) = Z 0(0 — 6;) - w, (4)  the microphones behind the focus of attention of the spedkiee
i=0 weighted centroid of the points in the sdtwith respect to the cen-
04 = argmaxG(0)+W(0). (5) ter of the head modét, c, can be defined as:
6
M
Finally, a Kalman filter is employed to smooth the estimation di = 1 Z w; (Ai — c) (6)
M (2 Q .
=1

4. MULTI-MODAL INTEGRATION

Finally, the orientation angIéMM is estimated by the computa-
tion of the centroidd s that is an average of the previously com-
puted videady and audiod 4 centroids:

Multimodal head orientation tracking is based on the audibvadeo
technologies described in the previous sections. In oundwork,

it is expected to have far more observations from the videdatity
than from the audio modality since persons in the SmartRo@m a 1
visible by the cameras during most of the video frames. Mago dyy = 5 (dv +da), @)
the audio system can estimate the person’s head orientatignif . 1

she/he is speaking. Hence, the presented approach reliesrity Ovm = tan (dM a, /dar Mm) : ®)



6. CONCLUSIONS

This paper presents and compares head pose estimationgigehin
based on both video and audio modalities and then combiniebin
different multimodal fusion schemes. Moreover, a novelhe@en-
tation estimator based on audio information is introduced.
These techniques allow integrating information from tworses
in order to enhance the estimation of the head orientatigheany
decreasing its estimation error and improving the clasgifia rate.
In the current scenario, it has been shown that a simple DatalL
) ) ) fusion technique outperformed a sophisticated Decisiovel&u-
Fig. 4. Images from two experimental cases. In (), speaker is bowgjon scheme. Quantitative results proved the effectigésour
ing his head towards the laptop and video based head of@m&d-  55nr0ach achieving a relative 41.45% reduction of the ifieation
timation does not produce an accurate result (red vectdt®abdio  orror rate from the best monomodal estimation (video) tolibet
estimation (green vector) generates a more accurate olptitna- 1, timodal estimation (data fusion).
tion reliability.is proportional to vector length. In (b)naxample Future research within this topic involve analysis of théada
were both estimators outputs a correct result. towards tracking attention of multiple people in meetingsl ain-
derstanding behaviors of individuals. Also, more effici@rdion
schemes are under research.
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