MULTI-PERSON 3D TRACKING WITH PARTICLE FILTERS ON VOXELS
A. Lopez, C. Canton-Ferrer, J.R. Casas

Image Processing Group
Technical University of Catalonia
Barcelona, Spain

ABSTRACT the input of the tracking system. A particle filter is empldyt®

This paper presents a new approach to the problem of sineaiten track a target estimating its 3D centroid and no motion mduel
tracking of several people in low resolution sequences frasttiple ~ Peen assumed to keep a reduced state space. Particle waights
calibrated cameras. Spatial redundancy is exploited tergésm a evaluated through a volume likelihood function measurirgtler
discrete 3D binary representation of the scene. A partittirifig a particle falls inside or outside a volume. A 3D discretsaeapling
scheme adapted to the incoming 3D discrete data is proposed. technique is introduced to propagate particles and to cayatbject
volume likelihood function and a discrete 3D re-samplinggedure  shifts. Multiple targets are tracked assigning a partidferfto every
are introduced to evaluate and drive particles. Multiptgess are  one. In order to achieve the most independent set of trackers
tracked by means of multiple particle filters and interactamnong ~ consider a 3D blocking method to model interactions. Fynadf-
them is modeled through a 3D blocking scheme. Test over atewbt ~ fectiveness of the proposed algorithm is assessed by méabgeo-
databases yield quantitative results showing the effectiss of the tive metrics defined in the framework the CLEARO6 [9] muttrget

proposed algorithm in the indoor scenarios. tracking database.
Index Terms— Multi-target tracking, particle filtering, 3D pro-
cessing, multi-camera analysis, human-computer intesfac 2. SYSTEM OVERVIEW
1. INTRODUCTION For a given frame in the video sequence, a se¥dfnages are ob-

tained from theN cameras (see a sample in Fig.1la). Each camera
The current paper addresses the problem of detecting asidrigea  is modeled using a pinhole camera model based on perspeotive
group of people present in an indoor scenario in a multipleeza  jection with camera calibration information available. réground
setup. Robust, multi-person tracking systems are employedide  regions from input images are obtained using a segmentation

range of applications, including SmartRoom environmesisveil-  gorithm based on Stauffer-Grimson’s background learnindysaib-
lance for security, health monitoring, as well as providiagation  straction technique [10] as shown in Fig.1b.
and context features for human-computer interaction. Redundancy among cameras is exploited by means of a Shape-

A number of methoc_is for camera based multi-person 3I_D trackfrom-Silhouette (SfS) technique [6]. This process gemsrat dis-

ing has been proposed in the literature [1]. A common godiés¢  crete occupancy representation of the 3D space (voxelshxalvs

systems is robustness under occlusions created by muipéets  |apelled as foreground or background by checking the dpatiesis-

present in the scene when estimating the position of a tajet  tency of its projection on of th&/ segmented silhouettes. The data

gle camera approaches [2] have been widely employed but@m® m gptained with this 3D reconstruction is corrupted by spusigoxels

vulnerable to occlusions, rotation and scale changes ofafget.  ntroduced due to wrong segmentation, camera calibratiancu-

In order to avoid these drawbacks, multi-camera trackiogrtgjues  racies, etc. A connectivity filter is introduced in order tmove

[3] exploit spatial redundancy among different views aruifite 3D these voxels by checking its connectivity consistency ititlspatial

information as well. Integration of features extractechfrmultiple  nejghbors. An example of the output of the whole 3D processin

cameras has been proposed in terms of image correspondéhces module is depicted in Fig.1c.

multi-view histograms [5] or voxel reconstructions [6]. , The resulting binary 3D scene reconstruction is fed to tie pr
Filtering techniques are employed to add temporal comsigte g6 tracking system that assigns a particle filter to eaget

to tracks. Kalman filtering approaches have been exteysissgld to Finally, a higher semantic analysis is performed over tiseilting

track a single object under Gaussian uncertainty modeldinear 505 Information about the environment (dimensiongiefroom,
dynamics [2]. However, these methods do not perform acelyrat ¢,njtyre, etc.) allow discarding tracks that are clearhpmg.
when facing noisy scenes or rapidly maneuvering targetsticka

filtering has been applied to cope with these situationsesincan
deal with multi-modalpdfs and is able to recover from lost tracks 3. 3D TRACKING ALGORITHM
[7, 8].
We propose a method for 3D tracking of multiple people in particle Filtering (PF) is an approximation technique fstiration
a multi-camera environment. Redundancy among cameras-is €roblems where the variables involved do not hold Gausiami-
ploited to obtain a binary 3D voxel representation of thenscas  certainty models and linear dynamics. The current trackienario
This material is based upon work partially supported by ®& pro-  ¢an be tackled by means of this algorithm to estimate the 3iipo

gramme of the EU through the IP IST-2004-506909 CHIL and bgZ@04-  Of a personx; = (z,y, z): at timet, taking as observation a set of
01914 project of the Spanish Government. binary voxels representing the 3D scene up to tirdenoted ag;.+.
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Fig. 1. In (a), a sample of multiview original images. In (b), foregnd segmentation of the input images employed by the $i&igim. In
(c), example of the binary 3D voxel reconstruction used is plaper (false colors are employed to depict various pgople

Multiple people might be tracked assigning a PF to each tangg  3.1. Likelihood Evaluation
defining an interaction model to ensure track coherence.

For a given targek:, PF approximates the posterior density
p(x¢|z1:¢) with a sum ofN; Dirac functions:

Functionp(z:|x:) can be defined as the likelihood of a particle be-
longing to the volume corresponding to a person. For a giegtigte
j occupying a voxel, its likelihood may be formulated as
N, N ;
Ptz ~ 3 wld - x), & el ) = g &= 0P ®
= PEC(xy,q9)
whereC(-) stands for the neighborhood over a connectiyiiomain
on the 3D orthogonal grid and(-)| represents its cardinality. Typi-
cally, connectivity in 3D discrete grids can be 6, 14 and 2biarour
researcly = 26 provided accurate results. Functid(t) measures
the distance between a foreground vopeh the neighborhood and
the particle.
i i i Ideally, particles placed inside the volume of the targéiae
wy o< wy_y p(ze]xy). (2 maximum likelihood while those being on the surface of thieive
attain a non-zero value. Volumes belonging to people woelddm-
SIR PF avoids the particle degeneracy problem by re-samplinpletely solid but, in practice, there are holes introducethe effect
at every time step. In this case, weights are setto, = 1/N,,Vj,  of segmentation inaccuracies during the SfS reconstmuctio
therefore

wherew? are the weights associated to the particles apdheir
positions. For this type of tracking problem, a Sampling dmance
Re-sampling (SIR) PF is applied to drive particles acrase j7].
Assuming importance density to be equal to the prior densitjght
update is recursively computed as:

w] o< p(ze]x]). (3) 3.2. 3D Discrete Re-sampling

Hence, the weights are proportional to the likelihood fiorcthat ~ The re-sampling step has been defined according to the @ondit
will be computed over the incoming volurze as defined in Sec.3.1. that every particle is assigned to a foreground voxel. leotords,
The re-sampling step derives the particles depending owélights ~ re-sampling has usually been defined as a process where sigae n
of the previous step, then all the new particles receive dirma S added to the position of the re-sampled particles acegridi their
weight equal tol /N, which will be updated by the next volume weights [7]. The higher the weight, the more replicas willdve-
likelihood function. ated. In our current tracking scenario, re-sampling addsestis-
Finally, the best state at tinteof targetm, X", is derived based cretgnoise to particles only allowing motion wit.hin the SD disiere
on the discrete approximation of Eq.1. The most common igoiut POSItions of adjacent foreground voxels as depicted ir2gigThen,

is the Monte Carlo approximation of the expectation as non populated foreground voxels are assigned to re-sanppletd

cles. In some cases, there are not enough adjacent forebvoxals
LN to be assigned, then a connectivity search finds closer nguye
X" = E [x¢|z1:4] ~ — Z w{xi. (4 voxels to be assigned as shown in Fig.2b.
, o

N,

The major limit of PF, and specially SIR ones, is the capgbili
of the particle set of representing thef when the sampling density
of the state space is low. Scenarios with high nhumber of @ésgoé
freedom require a large number of particles to perform agiefft
estimation with the consequent increase in terms of cortipntd
cost. An unnecessary computational load could appear witina Fig. 2. Discrete re-sampling example (in 2D).
ber of particles larger than required.

Up to authors knowledge, the novelty of the proposed of sehem
is to employ the minimum unit of the scene, the voxel, to rexefi No motion model has been assumed in the space state in order to
state space sampling. Being our volume a discrete repeggamt keep a reduced dimensionality of our estimation problenwéler,
particles are constrained to occupy a single voxel and matle w object translations are captured within the re-sampliag by means
displacements on the 3D discrete orthogonal grid. of this particle set expansion leading to satisfactoryltsesu
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Fig. 3. Particles from the tracket (yellow ellipsoid) falling into the

exclusion zone of trackeB (green ellipsoid) will be penalized by a

multiplicative factora € [0, 1].

3.3. Multi-Person PF Tracking

Challenges in 3D multi-person tracking from volumetric reeee-
construction are basically twofold. First, finding an irtetion model
in order to avoid missmatches and target merging. The seisdiid
tering spurious objects that appear in scene reconstruatid dis-
carding non-relevant objects such as chairs or furnitureis Tast
problem is managed by the last module of the system thatnpesfo
a higher semantic analysis of the scene.

Num.Particles| MOTP m fp mme | MOTA
50 222 | 27.7% 14.7% 47.5% 9.9%
100 206 | 64.9% 14.4% 8.5%| 65.0%
150 193 | 749% 15.1% 6.7%| 74.9%
300 187 | 81.4% 242% 9.7%| 81.4%
600 185 | 81.1% 9.4% 18.1% | 81.2%
1000 188 | 79.8% 9.9%  16.0%| 80.0%

Table 1. Quantitative results for a tracking experiment in the drett
case with voxel size of 2 cm. Legend: missgs)(false positives
(fp) and mismatchegwime).

4. EXPERIMENTAL RESULTS

In order to evaluate the performance of the proposed algoritve
collected a set of multi-view scenes in an indoor scenasioluing

up to 6 people, for a total of approximately 25 min. The analys
sequences were recorded with 5 fully calibrated and syméted
wide angle lense cameras in the SmartRoom at UPC with a resolu
tion of 720x576 pixels at 25 fps (see a sample in Fig.1). The te
environment is a 5m by 4m room with occluding elements such as
tables and chairs. Groundtruth data was labelled manuldhyiag

a quantitative measure of tracker’s performance. It shbeldoted
that the employed test database has been included in the RQEA

Several approaches have been proposed [3, 5] but the joint REvaluation [9].

presented in [8] is the optimal solution to multi-targetiimg using
PFs. However, its computational load increases drambtieath
the number of targets to track since every particle estigtheloca-
tion of all targets in the scene simultaneously. The propeséution
is to use a split PF per person, which requires less compuotti
load at the cost of not being able to solve some complex @esss.
However, this situation is alleviated by the fact that crogsrs are
restricted to the horizontal plane in our scenario (see3gjg.

Metrics proposed in [12] for multi-person tracking evalaat
have been adopted. These metrics, being used in interahtval-
uation contests [9] and adopted by several research psgach as
the European CHIL [13] or the U.S. Vace [14] allow objectivela
fair comparisons. Two metrics employed are: Maeltiple Object
Tracking Precision MOTP), which shows tracker’s ability to es-
timate precise object positions, and thultiple Object Tracking
Accuracy MOTA), which expresses its performance at estimating

Let us assume that there até independent PF trackers, be- the number of objects, and at keeping consistent trajestdiOTP
ing M the number of humans in the room. Nevertheless, they ar&cores the average metric error when estimating multipetz8D

not fully independent since each PF can consider voxels &ribrar
tracked targets in both the likelihood evaluation or the 88ampling
step resulting in target merging or identity missmatchasorter to
achieve the most independent set of trackers, we considerck-b
ing method to model interactions. Many blocking proposais be
found in 2D tracking related works [8, 11] and we extend it&io 8D
case. Blocking methods penalize particles that overlagzavith
other targets. Hence, blocking information can be alsoidensd
when computing the particle weights as:

M
. 1 . m
wl = < pCalad) T B (X700, X)),

s k=1

(6)

whereM is the total number of trackers; the index of the evalu-
ated tracker and( is the estimated state. Terfi{-) is the blocking
function defining exclusion zones that penalize partidiasfall into
them. For our particular case, considering that peoplesmabm are
always sitting or standing up (this is a meeting room so werass
that they never lay down), a way to define an exclusion regiod-m
eling the human body is by using an ellipsoid with fixedndy axis.

centroids, whileMOTA evaluates the percentage of frames where
targets have been missed, wrongly detected or mismatched.

Two parameters drive the performance of the algorithm: the
voxel sizev and the number of particles. Experiments carried out
explore the influence of these two variables onNMt@TPandMOTA
scores as depicted in Fig.4. This plot shows how scenes tecon
structed with a large voxel size do not capture well all spate-
tails and may miss some objects thus decreasing perfornudirtice
tracking system. Furthermore, the larger the number ofgbestthe
more accurate the performance of the algorithm; howevesuin
stantial improvement is achieved for more than 600 padidige to
the restriction imposed that every particle occupies thke sf one
voxel. Visual results of these effects are depicted in Fig.5

Quantitative results given by the best set of parametersiame
marized in Table 1 where the best performance is achievea whe
v = 2cm and 600 particles are employed for each target. It should
be noted that for a large number of particles, i.e. 1000arepding
is not able to find enough foreground voxels where to placpaal
ticles thus its performance decreases.

5. CONCLUSION AND FUTURE WORK

Axis in z is a function of the estimated centroid height. An exam-This paper presented a multi-person tracking system in diptaul

ple of this exclusion technique is depicted in Fig.3. Tratkbjects
that come very close can be successfully tracked even thitngh
volumes have partially merged.

camera view environment. Redundant information among casne
is exploited to produce 3D information that is employed hg pino-
posed tracker. A volume likelihood function and a discrefera-
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of particles. Low MOTP and high MOTA scores are preferred-ind
cating low metric error when estimating multiple target 3iipions
and high tracking performance.

sampling have been introduced as an effective approachit8D
PF implementation. Target interactions modeled throughbtbck-
ing technique employed in this work allowed tracking muipb-

jects

and resolving cross-overs and missmatches amoregdarg

Promising results obtained over a large test database gthee
effectiveness of our technique. Compared to the resultaged by
the CLEAR Evaluation [9], our system would had been ranked on

the 2

nd position over 10 participants.

Future research within this topic involve the incorporatid ad-
ditional modalities such as color to the obtained binaryelogcon-
struction of the scene towards increasing system robustrieslor
information might be helpful in maintaining the identity efery
moving object when they get very close thus resolving misiaf
targets. Real-time implementations of the presented itgorare

unde
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