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ABSTRACT
This paper presents a new approach to the problem of simultaneous
tracking of several people in low resolution sequences frommultiple
calibrated cameras. Spatial redundancy is exploited to generate a
discrete 3D binary representation of the scene. A particle filtering
scheme adapted to the incoming 3D discrete data is proposed.A
volume likelihood function and a discrete 3D re-sampling procedure
are introduced to evaluate and drive particles. Multiple targets are
tracked by means of multiple particle filters and interaction among
them is modeled through a 3D blocking scheme. Test over annotated
databases yield quantitative results showing the effectiveness of the
proposed algorithm in the indoor scenarios.

Index Terms— Multi-target tracking, particle filtering, 3D pro-
cessing, multi-camera analysis, human-computer interfaces

1. INTRODUCTION

The current paper addresses the problem of detecting and tracking a
group of people present in an indoor scenario in a multiple camera
setup. Robust, multi-person tracking systems are employedin a wide
range of applications, including SmartRoom environments,surveil-
lance for security, health monitoring, as well as providinglocation
and context features for human-computer interaction.

A number of methods for camera based multi-person 3D track-
ing has been proposed in the literature [1]. A common goal in these
systems is robustness under occlusions created by multipleobjects
present in the scene when estimating the position of a target. Sin-
gle camera approaches [2] have been widely employed but are more
vulnerable to occlusions, rotation and scale changes of thetarget.
In order to avoid these drawbacks, multi-camera tracking techniques
[3] exploit spatial redundancy among different views and provide 3D
information as well. Integration of features extracted from multiple
cameras has been proposed in terms of image correspondences[4],
multi-view histograms [5] or voxel reconstructions [6].

Filtering techniques are employed to add temporal consistency
to tracks. Kalman filtering approaches have been extensively used to
track a single object under Gaussian uncertainty models andlinear
dynamics [2]. However, these methods do not perform accurately
when facing noisy scenes or rapidly maneuvering targets. Particle
filtering has been applied to cope with these situations since it can
deal with multi-modalpdfs and is able to recover from lost tracks
[7, 8].

We propose a method for 3D tracking of multiple people in
a multi-camera environment. Redundancy among cameras is ex-
ploited to obtain a binary 3D voxel representation of the scene as
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the input of the tracking system. A particle filter is employed to
track a target estimating its 3D centroid and no motion modelhas
been assumed to keep a reduced state space. Particle weightsare
evaluated through a volume likelihood function measuring whether
a particle falls inside or outside a volume. A 3D discrete re-sampling
technique is introduced to propagate particles and to capture object
shifts. Multiple targets are tracked assigning a particle filter to every
one. In order to achieve the most independent set of trackers, we
consider a 3D blocking method to model interactions. Finally, ef-
fectiveness of the proposed algorithm is assessed by means of objec-
tive metrics defined in the framework the CLEAR06 [9] multi-target
tracking database.

2. SYSTEM OVERVIEW

For a given frame in the video sequence, a set ofN images are ob-
tained from theN cameras (see a sample in Fig.1a). Each camera
is modeled using a pinhole camera model based on perspectivepro-
jection with camera calibration information available. Foreground
regions from input images are obtained using a segmentational-
gorithm based on Stauffer-Grimson’s background learning and sub-
straction technique [10] as shown in Fig.1b.

Redundancy among cameras is exploited by means of a Shape-
from-Silhouette (SfS) technique [6]. This process generates a dis-
crete occupancy representation of the 3D space (voxels). A voxel is
labelled as foreground or background by checking the spatial consis-
tency of its projection on of theN segmented silhouettes. The data
obtained with this 3D reconstruction is corrupted by spurious voxels
introduced due to wrong segmentation, camera calibration inaccu-
racies, etc. A connectivity filter is introduced in order to remove
these voxels by checking its connectivity consistency withits spatial
neighbors. An example of the output of the whole 3D processing
module is depicted in Fig.1c.

The resulting binary 3D scene reconstruction is fed to the pro-
posed tracking system that assigns a particle filter to each target.
Finally, a higher semantic analysis is performed over the resulting
tracks. Information about the environment (dimensions of the room,
furniture, etc.) allow discarding tracks that are clearly wrong.

3. 3D TRACKING ALGORITHM

Particle Filtering (PF) is an approximation technique for estimation
problems where the variables involved do not hold Gaussianity un-
certainty models and linear dynamics. The current trackingscenario
can be tackled by means of this algorithm to estimate the 3D position
of a personxt = (x, y, z)t at timet, taking as observation a set of
binary voxels representing the 3D scene up to timet denoted asz1:t.
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Fig. 1. In (a), a sample of multiview original images. In (b), foreground segmentation of the input images employed by the SfS algorithm. In
(c), example of the binary 3D voxel reconstruction used in this paper (false colors are employed to depict various people).

Multiple people might be tracked assigning a PF to each target and
defining an interaction model to ensure track coherence.

For a given targetxt, PF approximates the posterior density
p(xt|z1:t) with a sum ofNs Dirac functions:

p (xt|z1:t) ≈

Ns
X

j=1

wj
t δ(xt − x

j
t), (1)

wherewj
t are the weights associated to the particles andx

j
t their

positions. For this type of tracking problem, a Sampling Importance
Re-sampling (SIR) PF is applied to drive particles across time [7].
Assuming importance density to be equal to the prior density, weight
update is recursively computed as:

wj
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j
t). (2)

SIR PF avoids the particle degeneracy problem by re-sampling
at every time step. In this case, weights are set towj

t−1
= 1/Ns, ∀j,

therefore

wj
t ∝ p(zt|x

j
t ). (3)

Hence, the weights are proportional to the likelihood function that
will be computed over the incoming volumezt as defined in Sec.3.1.
The re-sampling step derives the particles depending on theweights
of the previous step, then all the new particles receive a starting
weight equal to1/Ns which will be updated by the next volume
likelihood function.

Finally, the best state at timet of targetm, Xm
t , is derived based

on the discrete approximation of Eq.1. The most common solution
is the Monte Carlo approximation of the expectation as

X
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The major limit of PF, and specially SIR ones, is the capability
of the particle set of representing thepdf when the sampling density
of the state space is low. Scenarios with high number of degrees of
freedom require a large number of particles to perform an efficient
estimation with the consequent increase in terms of computational
cost. An unnecessary computational load could appear with anum-
ber of particles larger than required.

Up to authors knowledge, the novelty of the proposed of scheme
is to employ the minimum unit of the scene, the voxel, to redefine
state space sampling. Being our volume a discrete representation,
particles are constrained to occupy a single voxel and move with
displacements on the 3D discrete orthogonal grid.

3.1. Likelihood Evaluation

Functionp(zt|xt) can be defined as the likelihood of a particle be-
longing to the volume corresponding to a person. For a given particle
j occupying a voxel, its likelihood may be formulated as

p(zt| x
j
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,q)

d(xj
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whereC(·) stands for the neighborhood over a connectivityq domain
on the 3D orthogonal grid and|C(·)| represents its cardinality. Typi-
cally, connectivity in 3D discrete grids can be 6, 14 and 26 and in our
researchq = 26 provided accurate results. Functiond(·) measures
the distance between a foreground voxelp in the neighborhood and
the particle.

Ideally, particles placed inside the volume of the target achieve
maximum likelihood while those being on the surface of the volume
attain a non-zero value. Volumes belonging to people would be com-
pletely solid but, in practice, there are holes introduced as the effect
of segmentation inaccuracies during the SfS reconstruction.

3.2. 3D Discrete Re-sampling

The re-sampling step has been defined according to the condition
that every particle is assigned to a foreground voxel. In other words,
re-sampling has usually been defined as a process where some noise
is added to the position of the re-sampled particles according to their
weights [7]. The higher the weight, the more replicas will becre-
ated. In our current tracking scenario, re-sampling adds some dis-
cretenoise to particles only allowing motion within the 3D discrete
positions of adjacent foreground voxels as depicted in Fig.2a. Then,
non populated foreground voxels are assigned to re-sampledparti-
cles. In some cases, there are not enough adjacent foreground voxels
to be assigned, then a connectivity search finds closer non-empty
voxels to be assigned as shown in Fig.2b.

(a) (b)

Fig. 2. Discrete re-sampling example (in 2D).

No motion model has been assumed in the space state in order to
keep a reduced dimensionality of our estimation problem. However,
object translations are captured within the re-sampling step by means
of this particle set expansion leading to satisfactory results.
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Fig. 3. Particles from the trackerA (yellow ellipsoid) falling into the
exclusion zone of trackerB (green ellipsoid) will be penalized by a
multiplicative factorα ∈ [0, 1].

3.3. Multi-Person PF Tracking

Challenges in 3D multi-person tracking from volumetric scene re-
construction are basically twofold. First, finding an interaction model
in order to avoid missmatches and target merging. The secondis fil-
tering spurious objects that appear in scene reconstruction and dis-
carding non-relevant objects such as chairs or furniture. This last
problem is managed by the last module of the system that performs
a higher semantic analysis of the scene.

Several approaches have been proposed [3, 5] but the joint PF
presented in [8] is the optimal solution to multi-target tracking using
PFs. However, its computational load increases dramatically with
the number of targets to track since every particle estimates the loca-
tion of all targets in the scene simultaneously. The proposed solution
is to use a split PF per person, which requires less computational
load at the cost of not being able to solve some complex cross-overs.
However, this situation is alleviated by the fact that cross-overs are
restricted to the horizontal plane in our scenario (see Fig.3a).

Let us assume that there areM independent PF trackers, be-
ing M the number of humans in the room. Nevertheless, they are
not fully independent since each PF can consider voxels fromother
tracked targets in both the likelihood evaluation or the 3D re-sampling
step resulting in target merging or identity missmatches. In order to
achieve the most independent set of trackers, we consider a block-
ing method to model interactions. Many blocking proposals can be
found in 2D tracking related works [8, 11] and we extend it to our 3D
case. Blocking methods penalize particles that overlap zones with
other targets. Hence, blocking information can be also considered
when computing the particle weights as:
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”
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whereM is the total number of trackers,m the index of the evalu-
ated tracker andX is the estimated state. Termβ(·) is the blocking
function defining exclusion zones that penalize particles that fall into
them. For our particular case, considering that people in the room are
always sitting or standing up (this is a meeting room so we assume
that they never lay down), a way to define an exclusion region mod-
eling the human body is by using an ellipsoid with fixedx andy axis.
Axis in z is a function of the estimated centroid height. An exam-
ple of this exclusion technique is depicted in Fig.3. Tracked objects
that come very close can be successfully tracked even thoughtheir
volumes have partially merged.

Num.Particles MOTP m fp mme MOTA
50 222 27.7% 14.7% 47.5% 9.9%
100 206 64.9% 14.4% 8.5% 65.0%
150 193 74.9% 15.1% 6.7% 74.9%
300 187 81.4% 24.2% 9.7% 81.4%
600 185 81.1% 9.4% 18.1% 81.2%
1000 188 79.8% 9.9% 16.0% 80.0%

Table 1. Quantitative results for a tracking experiment in the better
case with voxel size of 2 cm. Legend: misses (m), false positives
(fp) and mismatches (mme).

4. EXPERIMENTAL RESULTS

In order to evaluate the performance of the proposed algorithm, we
collected a set of multi-view scenes in an indoor scenario involving
up to 6 people, for a total of approximately 25 min. The analysis
sequences were recorded with 5 fully calibrated and synchronized
wide angle lense cameras in the SmartRoom at UPC with a resolu-
tion of 720x576 pixels at 25 fps (see a sample in Fig.1). The test
environment is a 5m by 4m room with occluding elements such as
tables and chairs. Groundtruth data was labelled manually allowing
a quantitative measure of tracker’s performance. It shouldbe noted
that the employed test database has been included in the CLEAR06
Evaluation [9].

Metrics proposed in [12] for multi-person tracking evaluation
have been adopted. These metrics, being used in international eval-
uation contests [9] and adopted by several research projects such as
the European CHIL [13] or the U.S. Vace [14] allow objective and
fair comparisons. Two metrics employed are: theMultiple Object
Tracking Precision (MOTP), which shows tracker’s ability to es-
timate precise object positions, and theMultiple Object Tracking
Accuracy (MOTA), which expresses its performance at estimating
the number of objects, and at keeping consistent trajectories.MOTP
scores the average metric error when estimating multiple target 3D
centroids, whileMOTA evaluates the percentage of frames where
targets have been missed, wrongly detected or mismatched.

Two parameters drive the performance of the algorithm: the
voxel sizeν and the number of particles. Experiments carried out
explore the influence of these two variables on theMOTPandMOTA
scores as depicted in Fig.4. This plot shows how scenes recon-
structed with a large voxel size do not capture well all spatial de-
tails and may miss some objects thus decreasing performanceof the
tracking system. Furthermore, the larger the number of particles the
more accurate the performance of the algorithm; however, nosub-
stantial improvement is achieved for more than 600 particles due to
the restriction imposed that every particle occupies the size of one
voxel. Visual results of these effects are depicted in Fig.5.

Quantitative results given by the best set of parameters aresum-
marized in Table 1 where the best performance is achieved when
ν = 2cm and 600 particles are employed for each target. It should
be noted that for a large number of particles, i.e. 1000, re-sampling
is not able to find enough foreground voxels where to place allpar-
ticles thus its performance decreases.

5. CONCLUSION AND FUTURE WORK

This paper presented a multi-person tracking system in a multiple
camera view environment. Redundant information among cameras
is exploited to produce 3D information that is employed by the pro-
posed tracker. A volume likelihood function and a discrete 3D re-
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Fig. 4. MOTPandMOTAscores for various voxels sizes and number
of particles. Low MOTP and high MOTA scores are preferred indi-
cating low metric error when estimating multiple target 3D positions
and high tracking performance.

sampling have been introduced as an effective approach for this 3D
PF implementation. Target interactions modeled through the block-
ing technique employed in this work allowed tracking multiple ob-
jects and resolving cross-overs and missmatches among targets.

Promising results obtained over a large test database proved the
effectiveness of our technique. Compared to the results provided by
the CLEAR Evaluation [9], our system would had been ranked on
the 2nd position over 10 participants.

Future research within this topic involve the incorporation of ad-
ditional modalities such as color to the obtained binary voxel recon-
struction of the scene towards increasing system robustness. Color
information might be helpful in maintaining the identity ofevery
moving object when they get very close thus resolving mismatch of
targets. Real-time implementations of the presented algorithm are
under study.
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