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Abstract

This paper presents an overview of our work on real-time
multimodal tracking focus of attention of multiple persons
in a SmartRoom scenario. Redundancy among cameras is
exploited to generate a 3D discrete reconstruction of the
space. This information is fed to a novel low complexity
Monte Carlo based tracking scheme. Estimated locations
of people in the room are used to automatically determine
their head positions. Head orientation of every person is
computed using video and audio separately and then a mul-
timodal estimation is produced by combining data at fea-
ture level employing a decentralized Kalman filter. Finally,
participants’ focus attention is estimated by means of two
geometric descriptors: the attention cone and the atten-
tion map. Experiments conducted over annotated databases
yield quantitative results proving the effectiveness of the
presented approach.

1. Introduction
Multimodal analysis of signals towards providing reli-

able and informative data related to human activities has
gained a lot of interest in the recent years. This analysis is
important to build attentive interfaces aiming at supporting
humans in various tasks and situations. Examples of these
intelligent environments include the “digital office” [7], “in-
telligent house”, “intelligent classroom” and “smart confer-
encing rooms” [1, 13]. One important aspect for the analy-
sis and understanding of human-human or human-computer
interaction, is to somehow automatically gain knowledge
about people’s focus of attention, i.e.the knowledge about
the targets, objects, or other people with whom they inter-
act. The analysis of focus of attention dynamics can for
instance give relevant information about who is talking to
whom [27], the roles of people, their dominance and possi-
bly ranks, the structure of interaction [21], as well as about
the type of interaction going on (for example discussion vs.
presentation by one person).

This paper presents a real-time operating system for
multi-person focus of attention (FoA) estimation in an in-

Figure 1. Focus of attention estimation of a group of people may
allow the system to identify this gathering as a lecture where some-
body is distracted looking through the window and somebody else
is checking his email at the computer.

door scenario equipped with multiple cameras and far-field
microphones. A first step to determine someone’s FoA is
to find out in which direction the person looks. There are
two contributing factors in the formation of where a person
looks: head orientation and eye orientation. In this work
head orientation is considered as a sufficient cue to detect
a person’s direction of attention. Relevant psychological
literature offers a number of convincing arguments for this
approach [4] and the feasibility of this approach is demon-
strated experimentally in this paper.

Two already developed technologies are combined to-
wards estimating FoA in real-time: person tracking and
multimodal head orientation. Person tracking is addressed
by a novel Monte Carlo based technique that noticeably re-
duces the computational load of the process and still yields
to satisfactory results. Head orientation is performed in both
audio and video domains based on the algorithm presented
in [24]. Finally, FoA is addressed by two proposed descrip-
tors that can be computed fast and allow the detection and
classification of some cases of interest such as detecting the
regions of maximum FoA or recognizing interactions be-
tween participants. Presented results show the effectiveness
of the proposed system at an average rate of 10 fps.
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Figure 2. System flowchart.

2. System description

According to flowchart in Fig.2, the proposed system
comprises three main signal processing modules: person
tracking, head orientation estimation and focus of attention
estimation. For a given frame in the video sequence, a set of
M images are obtained from the M cameras (see a sample
in Fig.3a). Each camera is modeled using a pinhole camera
model based on perspective projection with camera calibra-
tion information available. Foreground regions from input
images are obtained using a segmentation algorithm based
on Stauffer-Grimson’s background learning and substrac-
tion technique [25] as shown in Fig.3b.

Redundancy among cameras is exploited by means of
a Shape-from-Silhouette (SfS) technique [12]. This pro-
cess generates a discrete occupancy representation of the
3D space (voxels). A voxel is labeled as foreground or
background by checking the spatial consistency of its pro-
jection on the M segmented silhouettes. The data obtained
with this 3D reconstruction is corrupted by spurious voxels
introduced due to wrong segmentation, camera calibration
inaccuracies, etc. A connectivity filter is introduced in order
to remove these voxels and the final 3D binary reconstruc-
tion is shown in Fig.3c.

These data is then fed to the person tracking module that
will produce a number of hypothesis about the centroid lo-
cation of the multiple targets (people) in the scenario. The
3D position of their heads is directly inferred by selecting
the upper voxels of the connected component associated to
a given centroid position. These head locations are the main
input required by the head orientation algorithms (both au-
dio and video). Estimations from these two algorithms are
combined to produce a more robust multimodal estimation.
Focus of attention is addressed by combining the head ori-
entation estimation of the multiple tracked people. Finally,
this information might be fed to a higher semantic analysis
module.

3. Multi-person Tracking

Detecting and tracking a group of people present in an in-
door scenario provides relevant data towards activity recog-
nition and understanding. Robust, multi-person tracking
systems are employed in a wide range of applications, in-
cluding SmartRoom environments, surveillance for secu-
rity, health monitoring, as well as providing location and
context features for human-computer interaction. As an ex-
ample, a person standing next to a white board and several
people located around a table provides enough evidence to
guess that people attend a presentation or lecture. Further-
more the location and number of people in a room also is a
useful feature for activity classification.

A number of methods for camera based multi-person
3D tracking has been proposed in the literature [17, 22].
A common goal in these systems is robustness under oc-
clusions created by multiple objects present in the scene
when estimating the position of a target. Single camera ap-
proaches [22] have been widely employed but are more vul-
nerable to occlusions, rotation and scale changes of the tar-
get. In order to avoid these drawbacks, multi-camera track-
ing techniques exploit spatial redundancy among different
views and provide 3D information as well. Integration of
features extracted from multiple cameras has been proposed
in terms of multi-view histograms [17] or voxel reconstruc-
tions [18] among others.

Filtering techniques are employed to add temporal con-
sistency to tracks. Kalman filtering approaches have been
extensively used to track a single object under Gaussian
uncertainty models and linear dynamics [20]. However,
these methods do not perform accurately when facing noisy
scenes or rapidly maneuvering targets. Particle filtering
has been applied to cope with these situations since it can
deal with multi-modal pdf s and is able to recover from lost
tracks [5].

Nevertheless, particle filtering turns out to be compu-
tationally demanding and hence not suitable for real-time
performing algorithms. This paper proposes a method that
aims at decreasing computation time by means of a novel
tracking technique based on the seminal particle filtering
principle presented in [18]. Particles no longer sample the
state space but instead a magnitude whose expectancy pro-
duces the centroid of the tracked person: the surface voxels.
The likelihood evaluation relying on occupancy information
is computed on local neighborhoods thus dramatically de-
creasing the computation load of the overall algorithm.

Multiple targets tracking is addressed by assigning a
tracker to every one. In order to achieve the most inde-
pendent set of trackers, a 3D blocking method modeling
the interaction between targets is considered. This strategy
defines an exclusion region where no particles from other
trackers may fall, following the idea introduced by [18].
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Figure 3. In (a), a sample of multiview original images. In (b), foreground segmentation of the input images employed by the SfS algorithm.
In (c), example of the binary 3D voxel reconstruction used in this paper (false colors are employed to depict various people).

3.1. Particle Filtering Background

Particle Filtering (PF) is an approximation technique
for estimation problems where the variables involved do
not hold Gaussianity uncertainty models and linear dynam-
ics. The current tracking scenario can be tackled by means
of this algorithm to estimate the 3D position of a person
xt = (x, y, z)t at time t, taking as observation a set of col-
ored voxels representing the 3D scene up to time t denoted
as z1:t. Multiple people might be tracked assigning a PF
to each target and defining an interaction model to ensure
track coherence.

For a given target xt, PF approximates the posterior den-
sity p(xt|z1:t) with a sum of Ns Dirac functions:

p (xt|z1:t) ≈
Ns∑
j=1

wj
t δ(xt − xj

t ), (1)

where wj
t are the weights associated to the particles and xj

t

their positions. For this type of tracking problem, a Sam-
pling Importance Re-sampling (SIR) PF is applied to drive
particles across time [5]. Assuming importance density to
be equal to the prior density, weight update is recursively
computed as:

wj
t ∝ wj

t−1 p(zt|xj
t ). (2)

SIR PF avoids the particle degeneracy problem by re-
sampling at every time step. In this case, weights are set to
wj

t−1 = 1/Ns, ∀j, therefore

wj
t ∝ p(zt|xj

t ). (3)

Hence, the weights are proportional to the likelihood func-
tion that will be computed over the incoming volume zt.
The re-sampling step derives the particles depending on the
weights of the previous step, then all the new particles re-
ceive a starting weight equal to 1/Ns which will be updated
by the next volume likelihood function.

Finally, the best state at time t of target m, Xm
t , is de-

rived based on the discrete approximation of Eq.1. The most
common solution is the Monte Carlo approximation of the

expectation as

Xm
t = E [xt|z1:t] ≈

1
Ns

Ns∑
j=1

wj
tx

i
t. (4)

3.2. Sparse Sampling

PF approach to tracking defines a set of instances of the
position of the tracked person, the particles, and a formu-
lation to measure the fitness of these hypothesis with rela-
tion to the observable data. However, the evaluation of this
likelihood function may be computationally expensive. An
alternative to PF is devised by reviewing the estimation of
the state Xt in Eq.4. Centroid of the person may be al-
ternatively extracted by computing the expectation over all
the surface voxel positions. By randomly selecting a given
number of voxels on this surface, it is still possible to obtain
an enough accurate estimation of Xt. We define the sparse
sampling (SS) algorithm as a method to recursively estimate
Xt from an evolving set of samples placed on the surface of
the tracked person. Since we are no longer exploring the
state space, we will talk about samples instead of particles.

Essentially, the proposed algorithm follows the PF anal-
ysis loop (re-sampling, propagation, evaluation and estima-
tion). Being our volume a discrete representation, samples
are constrained to occupy a single voxel and move with dis-
placements on the 3D discrete orthogonal grid. By defin-
ing the appropriate likelihood function, samples attain high
weights when placed on the surface while the re-sampling
block is constrained to place the newly created samples on
the foreground voxels. With this process, we define a recur-
sive way to obtain a sparsely sampled version of the surface
of the target and, therefore, its centroid.

3.2.1 Likelihood evaluation

Function p(zt|xj
t ) can be defined as the likelihood of a

sample belonging to the surface of a target. Let C(xj
t , q)

be a neighborhood over a connectivity q domain on the
3D orthogonal grid around a sample placed in voxel xj

t .
Then, we define the occupancy neighborhood around xj

t as
Oj

t = Vb
t ∩ C(xj

t , q). For a given sample j occupying a



voxel, its likelihood may be formulated as

p(zt| xj
t ) = 1−

∣∣∣∣∣ 2‖Oj
t‖

‖C(xj
t , q)‖

− 1

∣∣∣∣∣ , (5)

where ‖ ·‖ is the number of occupied voxels of the enclosed
volume. This expression measures the likelihood of a sam-
ple being placed in a surface voxel, attaining its maximum
value when the half of its neighborhood is occupied. In our
research q = 26 provided accurate results.

3.2.2 3D Discrete Re-sampling

The re-sampling step has been defined according to the con-
dition that every sample is assigned to a foreground voxel.
In other words, re-sampling has usually been defined as a
process where some noise is added to the position of the re-
sampled particles according to their weights [5]. The higher
the weight, the more replicas will be created. In our current
tracking scenario, re-sampling adds some discrete noise to
samples only allowing motion within the 3D discrete posi-
tions of adjacent foreground voxels as depicted in Fig.4a.
Then, non populated foreground voxels are assigned to re-
sampled samples. In some cases, there are not enough ad-
jacent foreground voxels to be assigned, then a connectiv-
ity search finds closer non-empty voxels to be assigned as
shown in Fig.4b.

(a) (b)

Figure 4. Discrete re-sampling example (in 2D).

3.3. Tracking Performance

In order to evaluate the performance of the proposed al-
gorithm, we collected a set of multi-view scenes in an in-
door scenario involving up to 6 people, for a total of approx-
imately 25 min. The analysis sequences were recorded with
5 fully calibrated and synchronized wide angle lense cam-
eras in the SmartRoom at UPC with a resolution of 720x576
pixels at 25 fps (see a sample in Fig.3). The test environ-
ment is a 5m by 4m room with occluding elements such as
tables and chairs. Groundtruth data was labeled manually
allowing a quantitative measure of tracker’s performance.
It should be noted that the employed test database has been
included in the CLEAR07 Evaluation [2].

Metrics proposed in [6] for multi-person tracking evalu-
ation have been adopted. These metrics, being used in inter-
national evaluation contests [2] and adopted by several re-
search projects such as the European CHIL [1] or the U.S.
Vace [3] allow objective and fair comparisons. Two met-
rics employed are: the Multiple Object Tracking Precision

(a) (b)

Figure 5. Tracking performance. In (a), a tracking scenario with 3
people and, in (b), with 5 people.

(MOTP), which shows tracker’s ability to estimate pre-
cise object positions, and the Multiple Object Tracking
Accuracy (MOTA), which expresses its performance at esti-
mating the number of objects, and at keeping consistent tra-
jectories. MOTP scores the average metric error when esti-
mating multiple target 3D centroids, while MOTA evaluates
the percentage of frames where targets have been missed,
wrongly detected or mismatched.

Two parameters drive the performance of the algorithm:
the voxel size ν and the number of samples. In order to
achieve a real-time performance, voxel size was set to ν = 4
cm and 300 particles were used. The performance of this
algorithm incresases proportionally with the number parti-
cles and with the inverse of the voxel size as shown in [10].
The obtained performance indicators were MOTP=110 mm
and MOTA=78%. A visual example of the tracker’s perfor-
mance is shown in Fig.5.

4. Multimodal Head Orientation
4.1. Multi-camera Estimation

Methods for head pose estimation proposed in the liter-
ature [8] use to follow a general approach that involves es-
timating the position of specific facial features in the image
(typically eyes, nostrils and mouth) and then fitting these
data to a head model. In practice, some of these methods
might require manual initialization and are particularly sen-
sitive to the selection of feature points. Moreover, near-
frontal views are assumed and and high-quality images are
available. For the applications addressed in our work, such
conditions are usually difficult to satisfy. Methods which
rely on a detailed feature analysis followed by head model
fitting would fail under these circumstances.

Most of the existing approaches are based on monocu-
lar analysis of images but few have addressed the multi-
ocular case for face or head analysis [9]. In this context,
appearance-based approaches [28] tend to achieve satisfac-
tory results with low resolution images. However, since
head orientation estimation is posed as a classification prob-
lem, output angle resolution is limited to a discrete set. Typ-
ically, 8 categories are employed [2] thus leading to a reso-
lution of 45o. When performing a multimodal fusion, infor-



mative video outputs are desired, thus preferring data anal-
ysis methods providing a real valued angle output.

Let us assume that the 3D position of the head of the
person of interest is available from the tracking module and
determined by a bounding box B, already available as an
input to the head orientation algorithm. The center and size
of the bounding box B allow defining an ellipsoid model of
the head H as shown in Fig.6a.

Color information within B is processed to extract skin
colored pixels in every image by mean of a classifier that
learns the statistics of the skin color [16]. Let us denote with
Sn all pixels classified as skin in the n-th view. It should be
noted that there could be empty sets Sn due to occlusions or
poor performance of the skin classifier. An example of skin
classification is shown in Fig.6a.

In order to estimate face orientation, we assume that all
skin patches {Sn}, 0 ≤ n < N , are projections of a region
of the surface of the estimated ellipsoid defining the head of
a person. Hence, color and space information are combined
to produce a synthetic reconstruction of the head and face
appearance in 3D. This is accomplished by back-projecting
the skin pixels of Sn from all N views onto the 3D ellipsoid
model. Formally, for each pixel pn ∈ Sn, we compute

Γ(pn) ≡ P−1
n (pn) = on + λv, λ ∈ R+, (6)

thus obtaining its back-projected ray in the world coordinate
frame passing through pn in the image plane with origin in
the camera center on and director vector v. Term Pn(·) is
the perspective projection operator from 3D to 2D coordi-
nates on the view n. A scheme of this process is shown in
Fig.6c. This information is considered by the set Sn con-
taining the 3D points. An associated weighting factor αn

takes into account the actual surface of the ellipsoid repre-
sented by a single pixel in view n in order to quantize the
effect of the different distances from the center of the object
to each camera. These weights are normalized such that∑N−1

n=0 αn = 1. Finally, after applying this process to all
skin patches we obtain a set Ω = {Sn, αn,H}, 0 ≤ n < N ,
combining color and spatial information.

4.1.1 Orientation Estimation

Head and face orientation is computed from the set Ω. The
angle to be estimated for our purposes in the SmartRoom
scenario has been chosen as a direction onto the xy plane.
The orientation angle θ̂V is estimated by the computation of
the weighted centroid of the fusion data Ω as

dV =
1∑N−1

n=0 |Sn|

N−1∑
n=0

αn

∑
pn∈Sn

(pn − c) , (7)

θ̂V = tan−1
(
dVy

/dVx

)
, (8)

where |Sn| denotes the number of elements (3D intersec-
tions) in the set and c is the center of the head H.
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Figure 6. In (a) skin patches are plotted in red and the ellipsoid
fitting in white and in (b), result of information fusion obtaining a
synthetic reconstruction of face appearance from images. In (c),
color and spatial information fusion process scheme. Pixels in the
set Sn are back-projected onto the surface of the ellipsoid defined
by H, generating the set Sn with its weighting term αn.

4.2. Multi-microphone Estimation

In this section we present a monomodal approach for es-
timating the head orientation from acoustic signals. The
proposed method is very efficient in terms of computational
load due to its simplicity and also does not require a large
aperture microphone array as previous works [23]. All re-
sults described in this work were derived using only a set
of four T-shaped 4-channel microphone clusters. It will as-
sumed that the active speaker’s location is known before-
hand.

Human speakers do not radiate speech uniformly in all
directions. In general, any sound source (e.g. a loud-
speaker) has a radiation pattern determined by its size and
shape and the frequency distribution of the emitted sound.
Like any acoustic radiator, the speaker’s directivity should
increase with frequency and mouth aperture. However, the
radiation pattern is time-varying during normal speech pro-
duction, being dependent on lip configuration. There are
works that try to simulate the human radiation pattern [19]
and other works that accurately measure the human radia-
tion pattern, showing the differences for male and female
talker and using different languages as English and French
[14]. Fig.7a shows the A-weighted typical radiation pat-
tern of a human speaker in horizontal plane passing through
his mouth. This radiation pattern shows an attenuation of
-2dB on the side of the speaker (900 or 270o) and -6dB at
his back. Similarly, the vertical radiation pattern is not uni-
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Figure 7. In (a), A-weighted head radiation diagram in the hori-
zontal plane. In (b), HLBR of the head radiation pattern.

form, e.g. there is about -3dB attenuation above the speaker
head.

The knowledge of the human radiation pattern can be
used to estimate the head orientation of an active speaker
by simply computing the energy received at each micro-
phone and searching the angle that best fits the radiation
pattern with the energy measures. However, this simple ap-
proach has several problems since the microphones should
be perfectly calibrated and different attenuation at each mi-
crophone due to propagation must be accounted for, thus
requiring the use of sound propagation models. In our ap-
proach, we propose to keep the computational simplicity by
using acoustic energy normalization to solve the aforemen-
tioned problems.

The energy radiated at 200Hz by an active speaker is low
directional, however, for frequencies above 4kHz the radi-
ation pattern is highly directive [14]. We make use of this
fact to define the High/Low Band Ratio (HLBR) of a radia-
tion pattern. The HLBR of a radiation pattern is defined as
the ratio between high and low bands of frequencies of the
radiation pattern and can be observed in Fig.7b.

Instead of computing the absolute energy received at
each microphone, the HLBR of the acoustic energy is es-
timated for each sensor. This value is directly comparable
across all microphones since, after this normalization, the
effects of bad calibration and propagation losses are can-
celled.

It must be noted that this technique is intended for single
person orientation estimation. When more than a person is
speaking the audio modality can not provide an accurate es-
timation. Nevertheless, multimodality alleviates this prob-
lem by a relying more on the video modality.

4.2.1 Orientation Estimation

As for the visual case, we assume that the active speaker’s
location is known beforehand and determined by c and the
vector ri from the speaker to each microphone mi is cal-
culated. Each vector ri forms an angle θi with the x-axis
in the xy plane. We define a function W (θ) that relates the
HLBR of acoustic energy at each microphone, denoted by

wi with each angle θi. Weights wi are normalized fulfilling∑n
i=1 wn = 1. The estimated speaker orientation can be

computed by searching the angle that maximizes the corre-
lation between the HLBR of a radiated pattern G(θ) and the
HLBR of the acoustic energy measured at each microphone.

W (θ) =
NMICS∑

i=0

δ(θ − θi) · wi, (9)

θ̂A = argmax
θ

G(θ) ∗W (θ). (10)

4.3. Multi-modal Estimation and Performance

Video and audio head orientation estimations, θ̂V and
θ̂A, are combined by means of decentralized a Kalman fil-
ter [15]. Using both input streams allowed the system to
overcome video occlusions among head participants, spe-
cially the speaker. This solution has been adopted instead
of other more sophisticated ones [11] in order to keep an
affordable computational load.

In order to evaluate the performance of the proposed al-
gorithms, we employed the CLEAR head pose database [2]
containing a set of scenes in an indoor scenario were a per-
son is giving a talk, for a total of approximately 15 min. The
analysis sequences were recorded with 4 fully calibrated
cameras and 4 microphone cluster arrays, with all both sen-
sors synchronized.

The metrics proposed in [2] for head pose evaluation
have been adopted: the Pan Mean Average Error (PMAE),
that measures precision of the head orientation angle in
terms of degrees; the Pan Correct Classification (PCC),
which shows the ability of the system to correctly clas-
sify the head position within 8 classes spanning 45o each;
and the Pan Correct Classification within a Range PCC,
shows the performance of the system when classifying the
head pose within 8 classes allowing a classification error
of ±1 adjacent class. Table 1 summarizes the obtained re-
sults where multimodal approaches almost always outper-
form monomodal techniques as expected. Improvements
achieved by multimodal approaches are twofold. First, er-
ror in the estimation of the angle (PMAE) decreases due to
the combination of estimators and, secondly, classification
performance scores (PCC and PCC) increase since failures
in one modality are compensated by the other.

Method PMAE (o) PCC (%) PCCR (%)
Video 57.23 32.88 71.39
Audio 53.14 28.47 69.17

Multimodal 48.53 38.19 73.47

Table 1. Quantitative results for the three presented systems.
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Figure 8. Focus of attention descriptors. In (a), the attention cones
generated by two people. In (b), the attention map generated by
the intersection of two cones: blue denotes the areas with one in-
tersection and red the areas with two intersections.

5. Focus of Attention Estimation

Once the positions of the people inside the room and the
orientation of their heads has been computed, focus of at-
tention (FoA) information may be estimated. This problem
has been typically addressed in the literature using neural
networks [27] or HHMs [26]. However, in order to keep
an affordable complexity of the system, two geometric de-
scriptors of the FoA are introduced and, from its properties,
a situation analysis can be derived.

The spatial region where the attention of a person is
drawn is tightly correlated with the orientation of his head
and the horizontal and vertical span of his eyes perception
[4]. In this paper only horizontal FoA is estimated since
most of the relevant activity is concentrated in this plane
and the visual span angle is empirically set to δ = 30o. The
attention coneK can be defined as the cone with an opening
angle δ, the apex centered at the head centroid x and the ori-
entation in the z-plane set to the head orientation estimation
θ. A depiction of the attention cones of several people can
be found in Fig.9a. In order to analyze the global focus of
attention of a group of people, we define the attention map
as the cumulative intersection of all the attention cones in
the z-plane. An example can be found in Fig.9b. Although
these two FoA descriptors are less sophisticated than statis-
tical or HMM based approaches, still capture the underlying
information of the group attention and allow detecting and
recognizing some basic events.

Two particular cases can be detected out of these two
FoA descriptors:

• Region of Interest detection: Intersection of a the
gaze cones of a number of attendees at a certain re-
gion of the space may denote that there is something
relevant there. For instance, when a presentation is
performed, the gaze cones of most of the participants
meet at the beamer projection area or at the presenter.
Given an attention map M, the regions of interest may
be defined as those fulfillingM > α, being α the min-

(a) (b)

Figure 9. Focus of attention analysis. In (a), two attendees are lis-
tening to the lecturer and their attention cones meet at the speaker
location. In (b), two attendees are detected to be interacting when
their attention cones have a high overlay and their orientation vec-
tors pass close to each other centroid.

imum number of cones intersecting at a given point of
the room. An example is depicted in Fig.9a with α = 3
in the lecture scenario and another example is shown
in Fig.9b with α = 2 where two people are interested
in the area near the door when somebody is entering.

• Interaction detection: Interaction between two peo-
ple can be detected when their corresponding attention
cones have a high overlap and the orientation vectors
of each person pass close to the cone origin of the other
as shown in Fig.9b. A cost matrix is computed at every
frame between all persons in the room and those pairs
fulfilling this criterium are labelled as interacting.

5.1. Performance

In order to assess the performance of the proposed focus
of attention analysis algorithm, a short 5 minutes database
was collected involving up to 5 people in a SmartRoom
scenario. The room setup consisted in 5 calibrated cam-
eras with a resolution of 720x576 pixels at 25 fps and 4
T-Shaped microphones sampling at a 44KHz. Groundtruth
information regarding the regions of interest and the inter-
action between individuals in the room was hand-labeled.
Performance of the overall system obtained an 85% of cor-
rectly detected events and a 15% of false positive detections.

Computational load of the overall system is proportional
to the number of targets to be analyzed in the scene. Perfor-
mance of the whole system attained an average speed of 15
fps when only one person is present in the scene and 6 fps
when there are 5 people. A distributed processing system
has been employed consisting in 5 off-the-shelf machines
with a 2.2GhZ processor.

6. Conclusions and Future Work

This paper presented a multi-person focus of attention
tracking system that combine two technologies, namely per-
son tracking and head orientation estimation. This system



was intended for real-time operation hence some consid-
erations have been made towards reducing its complexity
like the sparse sampling technique introduced in the multi-
person tracking module. Focus of attention is addressed by
defining the attention cone and the attention map that al-
lows detecting regions of interest and recognizing interac-
tions and behaviors among attendants.

Future research lines within the scope of this paper in-
clude defining more sophisticated automatic human behav-
ior analysis techniques based on focus of attention estima-
tion. Further validation of the proposed system over larger
databases with focus of attention annotations is under study.
Combination of this system with outputs coming from other
signal processing modules such as event detection or speech
activity detection are under study.
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