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ABSTRACT

This paper presents a new approach to the problem of simultaneous
tracking of several people in low resolution sequences from multiple
calibrated cameras. Redundancy among cameras is exploited to gen-
erate a discrete 3D colored representation of the scene. Two Monte
Carlo based schemes adapted to the incoming 3D discrete data are
introduced. First, a particle filtering technique is proposed relying
on a volume likelihood function taking into account both occupancy
and color information. Sparse sampling is presented as an alterna-
tive based on a sampling of the surface voxels in order to estimate
the centroid of the tracked people. In this case, the likelihood func-
tion is based on local neighborhoods computations thus decreasing
the computational load of the algorithm. A discrete 3D re-sampling
procedure is introduced to drive these samples along time. Multi-
ple targets are tracked by means of multiple filters and interaction
among them is modeled through a 3D blocking scheme. Tests over
annotated databases yield quantitative results showing the effective-
ness of the proposed algorithms in indoor scenarios.

Index Terms— Multi-target tracking, particle filtering, 3D color
processing, multi-camera analysis, human-computer interfaces

1. INTRODUCTION

The current paper addresses the problem of detecting and tracking a
group of people present in an indoor scenario in a multiple camera
setup. Robust, multi-person tracking systems are employed in a wide
range of applications, including SmartRoom environments, surveil-
lance for security, health monitoring, as well as providing location
and context features for human-computer interaction.

A number of methods for camera based multi-person 3D track-
ing has been proposed in the literature [1, 2, 3, 4]. A common goal
in these systems is robustness under occlusions created by multi-
ple objects present in the scene when estimating the position of a
target. Single camera approaches [2] have been widely employed
but are more vulnerable to occlusions, rotation and scale changes of
the target. In order to avoid these drawbacks, multi-camera track-
ing techniques [3] exploit spatial redundancy among different views
and provide 3D information as well. Integration of features extracted
from multiple cameras has been proposed in terms of image corre-
spondences [5], multi-view histograms [4] or voxel reconstructions
[6].

Filtering techniques are employed to add temporal consistency
to tracks. Kalman filtering approaches have been extensively used to
track a single object under Gaussian uncertainty models and linear
dynamics [2]. However, these methods do not perform accurately
when facing noisy scenes or rapidly maneuvering targets. Particle
filtering has been applied to cope with these situations since it can
deal with multi-modal pdf s and is able to recover from lost tracks
[1, 7].

In this paper, we propose two methods for 3D tracking of multi-
ple people in a multi-camera environment. Redundancy among cam-
eras is exploited to obtain a colored 3D voxel representation of the
scene as the input for the tracking systems. Our first proposal is
to employ a particle filter to track a target estimating its 3D cen-
troid, assuming a fixed size ellipsoid as the human body model of a
person. Particle weights are evaluated through a volume likelihood
function taking into account both occupancy and color information.
Multiple targets are tracked assigning a particle filter to every one
together with a color model in order to increase robustness against
mismatches among them. In order to achieve the most independent
set of trackers, we consider a 3D blocking method to model interac-
tions. The second proposed method aims at decreasing computation
time by means of a novel tracking technique based on the seminal
particle filtering principle extending our previous research [8]. Parti-
cles no longer sample the state space but instead a magnitude whose
expectancy produces the centroid of the tracked person: the surface
voxels. The likelihood evaluation relying on occupancy and color
information is computed on local neighborhoods thus dramatically
decreasing the computation load of the overall algorithm. Finally,
effectiveness of the proposed algorithms is assessed by means of ob-
jective metrics defined in the framework the CLEAR [9] multi-target
tracking database.

2. SYSTEM OVERVIEW

For a given frame in the video sequence, a set of N images are ob-
tained from the N cameras (see a sample in Fig.1a). Each camera
is modeled using a pinhole camera model based on perspective pro-
jection with camera calibration information available. Foreground
regions from input images are obtained using a segmentation al-
gorithm based on Stauffer-Grimson’s background learning and sub-
straction technique [10] as shown in Fig.1b.

Redundancy among cameras is exploited by means of a Shape-
from-Silhouette (SfS) technique [6]. This process generates a dis-
crete occupancy representation of the 3D space (voxels). A voxel is
labelled as foreground or background by checking the spatial con-
sistency of its projection on the N segmented silhouettes. The data
obtained with this 3D reconstruction is corrupted by spurious voxels
introduced due to wrong segmentation, camera calibration inaccura-
cies, etc. A connectivity filter is introduced in order to remove these
voxels and the final 3D binary reconstruction is shown in Fig.1c. The
visibility of a surface voxel onto a given camera is assessed by com-
puting the discrete ray originating from its optical center to the center
of this voxel using Bresenham’s algorithm and testing whether this
ray intersects with any other foreground voxel. The most saturated
color among pixels of the set of cameras that see a surface voxels is
assigned to it. An example of this process is depicted in Fig.1d.



(a) (b) (c) (d)

Fig. 1. Input data generation example. In (a), a sample of the original images. In (b), foreground segmentation of the input images employed
by the SfS algorithm. In (c), example of the binary 3D voxel reconstruction and, in (d), the final colored version shown over a background
image.

The resulting colored 3D scene reconstruction is fed to the pro-
posed systems that assign a tracker to each target. The resulting
tracks are processed by a higher semantic analysis module. Infor-
mation about the environment (dimensions of the room, furniture,
etc.) allow discarding tracks that are clearly wrong.

3. PARTICLE FILTERING

Particle Filtering (PF) is an approximation technique for estimation
problems where the variables involved do not hold Gaussianity un-
certainty models and linear dynamics. The current tracking scenario
can be tackled by means of this algorithm to estimate the 3D posi-
tion of a person xt = (x, y, z)t at time t, taking as observation a set
of colored voxels representing the 3D scene up to time t denoted as
z1:t. Multiple people might be tracked assigning a PF to each target
and defining an interaction model to ensure track coherence.

For a given target xt, PF approximates the posterior density
p(xt|z1:t) with a sum of Ns Dirac functions:

p (xt|z1:t) ≈
NsX
j=1

wj
t δ(xt − xj

t), (1)

where wj
t are the weights associated to the particles, fulfillingP

j wj
t = 1, and xj

t their positions. For this type of tracking prob-
lem, a Sampling Importance Re-sampling (SIR) PF is applied to
drive particles along time [7]. Assuming importance density to be
equal to the prior density, weight update is recursively computed as:

wj
t ∝ wj

t−1 p(zt|xj
t). (2)

SIR PF avoids the particle degeneracy problem by re-sampling
at every time step. In this case, weights are set to wj

t−1 = 1/Ns, ∀j,
therefore

wj
t ∝ p(zt|xj

t). (3)

Hence, the weights are proportional to the likelihood function that
will be computed over the incoming volume zt. The re-sampling
step derives the particles depending on the weights of the previous
step, then all the new particles receive a starting weight equal to
1/Ns which will be updated by the next volume likelihood function.

Finally, the best state at time t of target m, Xm
t , is derived based

on the discrete approximation of Eq.1. The most common solution
is the Monte Carlo approximation of the expectation as

Xm
t = E [xt|z1:t] ≈

NsX
j=1

wj
tx

i
t. (4)

3.1. Filter Implementation

Two crucial factors are to be taken into account when implementing
a PF: the likelihood evaluation and the propagation model. For a
given target m, an adaptive reference histogram Hm

t of the colored
surface voxels is available. CbCr color space is chosen due to its
robustness against light variations and 21 bins for every channel are
employed in the calculations. Let Ej

t be the 3D ellipsoid centered
at xj

t with a fixed size roughly modelling the human body. Function
p(zt|xj

t) can be defined as the likelihood of the ellipsoid Ej
t overlap-

ping the volume corresponding to the tracked person and matching
its color histogram. Information obtained at time t from the binary,
Vb

t , and color, Vc
t , 3D reconstructions (see Figs. 1c and 1d) are used

to define the likelihood function as:

p(zt| xj
t) = α

|Vb
t ∩ Ej

t |
|Ej

t |
+ (1− α)B(Hm

t , H(Vc
t ∩ Ej

t )), (5)

where | · | is the number of occupied voxels of the enclosed vol-
ume, B(·) is the Bhattacharya distance and H(·) stands for the color
histogram extraction operation. Factor α controls the influence of
each term (foreground and color information) in the overall likeli-
hood function. Value α = 0.5 provided satisfactory results.

Propagation model has been chosen to be a Gaussian noise
added to the state of the particles after the re-sampling step. More
sophisticated schemes employ previously learned motion priors to
drive the particles more efficiently [1]. However, this would penal-
ize the efficiency of the system when tracking unmodelled motions
patterns and, since the proposed algorithm is intended for any type
of motion, no dynamical model is adopted.

4. SPARSE SAMPLING

PF approach to tracking defines a set of instances of the position
of the tracked person, the particles, and a formulation to measure
the fitness of these hypothesis with relation to the observable data.
However, the evaluation of this likelihood function may be compu-
tationally expensive. An alternative to PF is devised by reviewing
the estimation of the state Xt in Eq.4. Centroid of the person may
be alternatively extracted by computing the expectation over all the
surface voxel positions. By randomly selecting a given number of
voxels on this surface, it is still possible to obtain an enough accu-
rate estimation of Xt. We define the sparse sampling (SS) algorithm
as a method to recursively estimate Xt from an evolving set of sam-
ples placed on the surface of the tracked person. Since we are no
longer exploring the state space, we will talk about samples instead
of particles.



Essentially, the proposed algorithm follows the PF analysis loop
(re-sampling, propagation, evaluation and estimation). Being our
volume a discrete representation, samples are constrained to occupy
a single voxel and move with displacements on the 3D discrete or-
thogonal grid. By defining the appropriate likelihood function, sam-
ples attain high weights when placed on the surface while the re-
sampling block is constrained to place the newly created samples on
the foreground voxels. With this process, we define a recursive way
to obtain a sparsely sampled version of the surface of the target and,
therefore, its centroid.

4.1. Likelihood evaluation

Function p(zt|xt) can be defined as the likelihood of a sample be-
longing to the surface corresponding to a target characterized by an
adaptive reference color histogram Hm

t . Let C(xj
t , q) be a neigh-

borhood over a connectivity q domain on the 3D orthogonal grid
around a sample placed in voxel xj

t . Then, we define the occupancy
and color neighborhoods around xj

t as Oj
t = Vb

t ∩ C(xj
t , q) and

Cj
t = Vc

t ∩ C(xj
t , q), respectively. For a given sample j occupying

a voxel, its likelihood may be formulated as

p(zt| xj
t) = α

„
1−

˛̨̨̨
2|Oj

t |
|C(xj

t , q)|
− 1

˛̨̨̨«
+ (1− α)D(Hm

t ,Cj
t),

(6)
where the first term measures the likelihood of a sample being placed
in a surface voxel, attaining its maximum value when the half of its
neighborhood is occupied. Since Cj

t contains only local color infor-
mation with reference of the global histogram Hm

t , the second term
employs a color distance D(·) able to measure such color similarity.
For every voxel in Cj

t , it is decided whether it is similar to Hm
t by se-

lecting the histogram value for the tested color and checking whether
it is above a threshold γ or not. Finally, the ratio between the number
of similar color and total voxels in the neighborhood gives the color
similarity score. Since reference histogram is updated and changes
over time, a variable threshold γ is computed so that the 80% of
the values of Hm

t are taken into account. In our research q = 26
provided accurate results.

4.2. 3D Discrete Re-sampling

The re-sampling step has been defined according to the condition
that every sample is assigned to a foreground voxel. In other words,
re-sampling has usually been defined as a process where some noise
is added to the position of the re-sampled particles according to their
weights [7]. The higher the weight, the more replicas will be cre-
ated. In our current tracking scenario, re-sampling adds some dis-
crete noise to samples only allowing motion within the 3D discrete
positions of adjacent foreground voxels as depicted in Fig.2a. Then,
non populated foreground voxels are assigned to re-sampled sam-
ples. In some cases, there are not enough adjacent foreground vox-
els to be assigned, then a connectivity search finds closer non-empty
voxels to be assigned as shown in Fig.2b.

(a) (b)

Fig. 2. Discrete re-sampling example (in 2D).
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Fig. 3. Zenital view of two comparative experiments showing the
influence of color in the SS algorithm when there is a cross-over
between two targets (white and yellow ellipsoids).

5. MULTI-PERSON TRACKING

The proposed solution for multi-person tracking is to use a split
tracker per person together with an interaction model. Let us as-
sume that there are M independent trackers. Nevertheless, they are
not fully independent since each tracker can consider voxels from
other targets in both the likelihood evaluation or the 3D re-sampling
step resulting in target merging or identity missmatches. In order to
achieve the most independent set of trackers, we consider a block-
ing method to model interactions. Many blocking proposals can
be found in 2D tracking related works [1] and we extend it to our
3D case. Blocking methods penalize particles/samples that overlap
zones with other targets. Hence, blocking information can be also
considered when computing the particle weights as:

wj
t = p(zt|xj

t)

MY
k=1
k 6=m

β
“
Xm

t−1, X
M
t−1

”
, (7)

where M is the total number of trackers, m the index of the evalu-
ated tracker and X is the estimated state. Term β(·) is the blocking
function defining exclusion zones that penalize particles that fall into
them. For our particular case, considering that people in the room are
always sitting or standing up (this is a meeting room so we assume
that they never lay down), a way to define an exclusion region mod-
eling the human body is by using an ellipsoid with fixed x and y axis.
Axis in z is a function of the estimated centroid height. Tracked ob-
jects that come very close can be successfully tracked even though
their volumes have partially merged.

Filtering spurious objects that appear in scene reconstruction and
discarding non-relevant objects such as chairs or furniture is man-
aged by the last module of the system that performs a higher seman-
tic analysis of the scene.

6. EXPERIMENTAL RESULTS

In order to evaluate the performance of the proposed algorithm, we
collected a set of multi-view scenes in an indoor scenario involving
up to 6 people, for a total of approximately 25 min. The analysis
sequences were recorded with 5 fully calibrated and synchronized
cameras with a resolution of 720x576 pixels at 25 fps (see a sample
in Fig.1). The test environment is a 5m by 4m room with occluding
elements such as tables and chairs. Groundtruth data was labelled
manually allowing a quantitative measure of tracker’s performance.
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Fig. 4. MOTP and MOTA scores for various number of parti-
cles/samples comparing the Particle Filtering and the Sparse Sam-
pling algorithms. Color influence is also depicted. Low MOTP
and high MOTA scores are preferred indicating low metric error
when estimating multiple target 3D positions and high tracking per-
formance.

It should be noted that the employed test database has been included
in the CLEAR06 Evaluation [9].

Metrics proposed in [11] for multi-person tracking evaluation
have been adopted. These metrics, being used in international eval-
uation contests [9] and adopted by several research projects such as
the European CHIL or the U.S. VACE allow objective and fair com-
parisons. Two metrics employed are: the Multiple Object Tracking
Precision (MOTP), which shows tracker’s ability to estimate pre-
cise object positions, and the Multiple Object Tracking Accuracy
(MOTA), which expresses its performance at estimating the number
of objects, and at keeping consistent trajectories. MOTP scores the
average metric error when estimating multiple target 3D centroids,
while MOTA evaluates the percentage of frames where targets have
been missed, wrongly detected or mismatched.

The two proposed systems where tested and the results reported
in Table 1. PF and SS achieved similar performances but the main
difference arose in the computational load measured as frames per
second (fps). Since likelihood function is computed over a local
neighborhood in the SS case, the overall complexity of the algo-
rithm is reduced in comparison with the PF. Furthermore, the impact
of color information in MOTP and MOTA scores for the two pro-
posed tracking systems is depicted in Fig.4.

7. CONCLUSIONS AND FUTURE WORK

This paper presented two multi-person tracking systems in a multiple
camera view environment. Redundant information among cameras
is exploited to produce a 3D information that is employed by the pro-
posed trackers. A PF based strategy proved efficient for this task but
requiring a high computational load. In order to alleviate such draw-
back, sparse sampling technique has been presented as an alternative
producing similar results but demanding roughly half of the process-
ing time. Color information together with a blocking scheme has
been employed to model interactions among targets thus adding ro-
bustness against mismatches and cross-overs among targets in both
systems. Promising results obtained over a large test database proved
the effectiveness of our techniques. Future research involves integra-
tion with audio technologies towards a multimodal tracking system.

PF PF Color
Particles MOTA MOTP fps MOTA MOTP fps

100 2.1 167 0.95 9.3 166 0.96
200 15.4 160 0.75 42.7 159 0.69
400 77.2 142 0.38 87.3 125 0.36
600 83.0 135 0.29 95.2 120 0.25
800 81.9 131 0.27 94.0 119 0.20

1000 82.3 128 0.22 90.1 120 0.15

SS SS Color
Samples MOTA MOTP fps MOTA MOTP fps

100 21.3 159 1.80 22.6 157 0.92
200 52.2 128 2.24 92.3 121 0.90
400 80.1 121 2.14 93.1 115 0.88
600 88.8 119 1.47 94.4 116 0.72
800 81.2 120 1.57 77.3 119 0.77

1000 74.3 126 1.42 75.2 122 0.70

Table 1. Quantitative experiments for different number of parti-
cles/samples. Voxel size was set to be ν = 2 cm.
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