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Abstract We present a framework for training and synthe-
sis of an audio-driven dancing avatar. The avatar is trained
for a given musical genre using the multicamera video
recordings of a dance performance. The video is analyzed
to capture the time-varying posture of the dancer’s body
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İstanbul, Turkey
e-mail: fofli@ku.edu.tr

Y. Demir
e-mail: ydemir@ku.edu.tr

Y. Yemez
e-mail: yyemez@ku.edu.tr

E. Erzin
e-mail: eerzin@ku.edu.tr

A.M. Tekalp
e-mail: mtekalp@ku.edu.tr
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whereas the musical audio signal is processed to extract the
beat information. We consider two different marker-based
schemes for the motion capture problem. The first scheme
uses 3D joint positions to represent the body motion whereas
the second uses joint angles. Body movements of the dancer
are characterized by a set of recurring semantic motion pat-
terns, i.e., dance figures. Each dance figure is modeled in
a supervised manner with a set of HMM (Hidden Markov
Model) structures and the associated beat frequency. In the
synthesis phase, an audio signal of unknown musical type
is first classified, within a time interval, into one of the gen-
res that have been learnt in the analysis phase, based on mel
frequency cepstral coefficients (MFCC). The motion para-
meters of the corresponding dance figures are then synthe-
sized via the trained HMM structures in synchrony with the
audio signal based on the estimated tempo information. Fi-
nally, the generated motion parameters, either the joint an-
gles or the 3D joint positions of the body, are animated along
with the musical audio using two different animation tools
that we have developed. Experimental results demonstrate
the effectiveness of the proposed framework.

Keywords Multicamera motion capture · Audio-driven
body motion synthesis · Dancing avatar animation
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Fig. 1 An example scene captured by the multicamera system available at Koç University. Markers are attached at or around the joints of the
dancer’s body

1 Introduction

In a typical dance performance, the body movements of the
dancer are primarily driven by, and hence, highly correlated
with the musical audio signal. The work presented in this
paper can be thought of as a first attempt to model this cor-
relation towards the goal of automatic synthesis of a dancing
avatar driven by musical audio.

In the signal processing literature, there exists little re-
search that addresses the problem of audio-driven human
body motion synthesis. The most relevant literature is on
speech-driven lip animation [1]. Since lip movement is
physiologically tightly coupled with acoustic speech, it
is relatively an easy task to find a mapping between the
phonemes of speech and the visemes of lip movement. Many
schemes exist to find such audio-to-visual mappings among
which the HMM (Hidden Markov Model)-based techniques
are the most common as they yield smooth animations ex-
ploiting temporal dynamics of speech. Some of these works
also incorporate synthesis of facial expressions along with
the lip movements to make animated faces look more nat-
ural [2–5]. The more recent works that study the correlation
between head gestures and speech prosody [6] or between
hand gestures and speech content [7] towards the goal of
more realistic speaker animation can also be considered in
the same context.

The analysis and synthesis of body movements driven by
musical audio pose more difficult challenges as compared to
the speaker animation problem. In the first place, the body
motion patterns, i.e., the dance figures, are usually very com-
plicated in structure, having certain syntactic rules and hier-
archies of figures. They are open to interpretation, and ex-
hibit variations in time even for the same person. Secondly,
the characteristic features of a musical audio signal, such as

beat, tempo and tune, that are important in driving the dance
performance are not well defined and hence need to be stud-
ied from the signal processing perspective.

We address the audio-driven body motion analysis and
synthesis problem considering the most simplistic scenario
possible in a dance performance. Figure 1 demonstrates our
general setting for this scenario. Our dancing avatar au-
tomatically classifies the genre of a given musical piece
and associates with it a single dance figure that it learns
from manually segmented multiview video sequences of the
dancer. Each dance figure is modeled and synthesized using
an HMM structure, and synchronized with the musical au-
dio signal using the beat information. A crucial task during
avatar training is capturing the motion of the dancer. Two
different marker-based tracking techniques, one of which is
based on annealing particle filtering and a major contribu-
tion of this work, are employed for this purpose.

2 System overview

The overall system, as depicted in Fig. 2, comprises three
modules: multimodal analysis (training), audio-driven body
motion synthesis and animation. In the analysis block, mul-
tiview video sequences are analyzed in order to capture the
time-varying posture of the dancer’s body while audio is
processed to extract beat information. Two different feature
sets are considered as body posture parameters, i.e., joint
angles and 3D joint positions. A marker-based motion cap-
ture system is employed to extract these feature sets. For
analysis of motion features, the multiview videos are manu-
ally segmented into semantic recurring motion patterns: the
dance figures. The corresponding body posture parameters
are then used to train a set of HMMs, each modeling a dif-
ferent dance figure. Since the audio and video sequences are
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Fig. 2 Block diagram of the complete analysis-synthesis system

synchronized, each repetition of a dance figure determines a
time segment from which the beat frequency associated with
the figure can be estimated.

In the synthesis module, a given musical audio signal is
first classified, within a time interval, into one of the genres
that have been learnt in the analysis part. For genre clas-
sification, we rely on mel frequency cepstral coefficients
(MFCC) and employ the HMM-based classification tech-
nique described in [8]. Beat information is then extracted
in order to decide on the dance figure to synthesize and its
duration. Afterwards, the system generates the body motion
parameters associated with the chosen dance figures by us-
ing the corresponding HMMs, in synchrony with the beat
information.

Finally, the motion parameters, either the joint angles or
the 3D joint positions of the body posture, are animated
using two different animation tools that we have devel-
oped. We animate the set of joint positions on a 3D stick
figure and the set of joint angles on a 3D human body
model.

Currently, our avatar has been trained to classify and
dance only two genres, salsa and belly, and is capable of
making a single dance figure associated to each genre.

3 Multicamera body motion tracking

A marker based approach is employed for motion tracking
where a set of distinguishable color markers are attached
at or around the joints of the dancer. There exist a num-
ber of marker-based commercial systems as evaluated in
[9, 10] for human motion capture but most of them rely on
a high number of cameras to avoid occlusions, high frame
rates or expensive hardware. In this work, we describe two

low-cost methods for multi-camera marker-based body mo-
tion capture, that is accurate enough to train our dancing
avatar.

The first method tracks the 3D positions of the joints
of the body based on the markers’ 2D projections on each
camera’s image plane. The second method uses the angles
at the joints of the body as posture parameters and tracks
them based on annealing particle filtering using the markers’
2D projections on each camera’s image plane. The former
method allows users to intervene into the tracking process,
and therefore, has the benefit of producing accurate track-
ing results by letting users correct errors manually during
the tracking process. However, the tracking process itself
may become lengthy and cumbersome process. The latter
method, on the other hand, is automatic and eliminates the
necessity of user intervention into the tracking process. This
simplifies the overall motion capture process at an accept-
able cost of accuracy loss.

3.1 Initialization

For a given frame in the video sequence, a set of N images
are obtained from the N cameras. Each camera is modeled
using a pinhole camera model based on perspective projec-
tion. Accurate calibration information is available. In order
to estimate the 2D positions of the markers attached to the
body of the dancer in the set of N images for a given frame,
the original images are processed in the YCrCb color space
which gives flexibility over intensity variations in the frames
of a video as well as among the videos captured by the cam-
eras from different views. In order to learn the chrominance
information of the marker color, markers on the dancer are
manually labeled in the first frame for all camera views. We
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assume that the distributions of Cr and Cb channel inten-
sity values belonging to marker regions are Gaussian. Thus,
we calculate the mean, μ, and the covariance, �, over each
marker region (a pixel neighborhood around the labeled
point), where μ = [μCr,μCb]T and � = (c − μ)(c − μ)T ,
c being [cCr , cCb]T . Then, a threshold in the Mahalanobis
sense with (μ,�) is applied to all images in order to detect
marker locations. The number of detected markers in every
image may vary due to occlusions. However, tracking infor-
mation and redundancy among views allow us to overcome
this problem.

3.2 Tracking the 3D joint positions

The motion capture process in this case involves retriev-
ing the body configuration in terms of its defining parame-
ters, namely Pt = {p0, . . . , pM−1}t , from the multiple video
streams at a given time t . This set of parameters includes
the 3D positions of the markers located about the articula-
tion points. The 3D position of each marker at each frame
is determined via triangulation based on the observed 2D
projections of the markers on each camera’s image plane.

Let M bethe number of markers on the dancer and W
be the set of search windows, where W = [w1,w2, . . . ,wM ]
such that each window wm is centered around the location,
[xm,ym]T , of the corresponding marker. The set W is used
to track markers over frames. Thus the center of each search
window, wm, is initialized as the point manually labeled
in the first frame and specifies the current position of the
marker.

To track the marker positions through the incoming
frames, we use the Mahalanobis distance from c to (μ,�)

where c is a vector containing Cr and Cb channel in-

tensity values [cCr , cCb]T of a point xn ∈ wm. Let X =
[x1,x2, . . . ,xL] be the set of candidate pixels for which the
chrominance distance is less than a certain threshold. If the
number of these candidate pixels, L, is larger than a prede-
fined value, then we label that marker as visible in the cur-
rent camera view and update its position as the mean of the
points in X for the current camera view. The same process
is repeated for all marker points in all camera views. Hence,
we have the visibility information of each marker from each
camera, and for those that are visible, we have the list of
2D positions of the markers on that specific camera image
plane.

Once we scan the current scene from all cameras and ob-
tain the visibility information for all markers, we start calcu-
lating the 3D positions of the markers by back-projecting the
set of 2D points which are visible in respective cameras, us-
ing triangulation method. Theoretically, it is sufficient to see

Fig. 3 Block diagram of the proposed 3D joint positions tracking sys-
tem

Fig. 4 An example scene from the 3D joint positions tracking process. Red pixel regions in the red search windows represent the marker candidate
pixels for the current frame. Green dots are the 2D projections of the 3D marker positions for the previous frame
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a marker at least from two cameras to be able to compute its
position in 3D world. If a marker is not visible at least from
two cameras, then its current 3D position is estimated from
the information in the previous frame.

The 3D positions of markers are tracked over frames by
Kalman filtering where the filter states correspond to 3D po-
sition and velocity of each marker. The list of 3D points ob-
tained by back-projection of visible 2D points in respective
camera image planes constitutes the observations for this fil-
ter. This filtering operation has two purposes:

• to smooth out the measurements for marker locations in
the current frame,

• to estimate the location of each marker in the next frame
and to update the positioning of each search window, wm,
on the corresponding image plane accordingly.

Figure 3 summarizes the overall system for tracking 3D
joint positions. Having updated the list of 3D joint positions
for the current frame and estimated the location of the search
windows for the next frame, we move on to the next frame
and search the marker positions within the new search win-
dows. This algorithm is repeated for the whole video. An
instance of the 3D joint positions tracking process is shown
in Fig. 4.

Fig. 5 Block diagram of the proposed system for tracking 3D joint
positions

3.3 Tracking the joint angles

The set of body posture parameters, in this case, includes the
articulation angles, �t = {θ0, . . . , θM−1}t , along with torso
rotation and translation. The general scheme for extracting
the joint angles from the set of 2D marker positions is sum-
marized in Fig. 5.

In order to analyze the incoming data, i.e., the set of 2D
marker locations for N views, an articulated body model is
employed. This body model allows exploiting the underly-
ing antropomorphic structure of the data [11]. The employed
model is formed by a set of joints and links representing the
limbs, head and torso of the human body and a given number
of degrees of freedom (DoF) are assigned to each articula-
tion (joint). Particularly, our model has 22 DoFs to properly
capture all possible movements of the body (see an example
of this in Fig. 6).

We track the body angles �t along time using an An-
nealing Particle Filtering strategy [12]. This technique is
employed to tackle estimation problems involving a high di-
mensional state space such as in this articulated human body
tracking task. Two major issues must be addressed when em-
ploying particle filtering: likelihood evaluation and propaga-
tion model. The first establishes the observation model, that
is, how a given configuration of the body matches the incom-
ing data. For a given particle, we compute the 3D positions
of the articulations by means of exponential maps [11] and
then project them onto the N incoming images. In order to
compute the likelihood of the detected markers against the
projected position of the joints, we employ the robust sym-
metric epipolar distance introduced in [13]. This distance
measures the closeness of a set of 2D points observed as the
projections of the same 3D location from different views,
exploiting the redundancy among cameras.

Fig. 6 An instance of the marker-based human body motion tracking process from two camera views. The articulated body model with 22 DoFs
is represented as a stick model on the dancer’s body
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Fig. 7 A simple left-to-right HMM structure with N states in between
the start and end states

The propagation model is adopted to add a drift to the
angles of the particles in order to progressively sample the
state space in the following iterations [14]. Moreover, an un-
derlying motion pattern is employed in order to efficiently
sample the state space, thus reducing the number of particles
required. This motion pattern is represented by the kinemat-
ical constrains and physical limits of the joints of the hu-
man body. An instance of the joint angles tracking process
is shown in Fig. 6.

4 Multimodal analysis

4.1 Body motion analysis

We employ HMMs to model the dance figures, i.e., the
body motion patterns recurring in the dance performance.
Since we performed two different techniques for body mo-
tion tracking, we have two different sets of body motion fea-
tures: joint angles and joint positions. We perform separate
body motion analysis tasks using these two parameter sets
individually. In the first case, the HMMs are trained with
the parameter set resulting from the joint angles tracking
process, that includes the joint angles as well as the rotation
and translation of the torso. In the second case, the HMMs
are trained with the parameter set resulting from the 3D joint
positions tracking process, that basically consists of the 3D
coordinates of the joints at each frame.

In both cases, the same approach is adopted for analysis
to interpret the recurrent body motion patterns as the com-
mon dance figures. In the case of joint angles, three separate
HMMs are employed for each dance figure to better capture
the dynamic behavior of the dancing body; one for the torso
and two for the upper and lower parts of the body. In the
other case where 3D joint positions are used, two separate
HMMs are employed for each dance figure; one for the up-
per and one for the lower part of the body. In both cases, the
HMM structure for the upper part of the body models basi-
cally the movement of the arms while the one for the lower
part models the movement of the legs. There is no need for
a third HMM in the latter case because, unlike the former
case, the information for torso does not need to be handled
explicitly.

A typical dance figure contains a well-defined sequence
of movements, hence we employ a left-to-right HMM struc-
ture to model each figure (Fig. 7). Each body posture para-
meter is represented by a single Gaussian function and one
full covariance matrix is computed for each HMM model.

Fig. 8 Beat detection example: time waveform, spectrogram and spec-
tral energy flux of 4 seconds of salsa type music computed with a 50%
overlap analysis window

This rather simple scheme leads to satisfactory results with-
out need for more complicated HMM configurations. For
all HMM-related computations, we have used the “Hidden
Markov Model Toolkit” (HTK) [15].

4.2 Audio analysis

Among various features that characterize a musical audio
signal, such as tonality, harmony or melody, tempo is the
one that primarily drives and synchronizes the dancing act.
Hence we have employed tempo and the relevant beat infor-
mation as the audio features that drive our dancing avatar.
We estimate the tempo in terms of beats per minute (BPM)
using the algorithm suggested in [16]. Tempo estimation in-
volves three basic tasks: onset detection, periodicity estima-
tion and beat location estimation. Onset detection aims to
point out where musical notes start, and tempo is established
by the periodicity of the detected onsets. Beat location is
computed directly from periodicity estimation.

First, onsets are detected based on the spectral energy
flux of the input audio signal, that signifies one of the most
salient features. Onset detection is determining, since beat
tends to occur at onsets. Next, the periodicity is estimated
from the detected onsets using an autocorrelation based
method. Once the periodicity is determined, the tempo can
be calculated in terms of BPM. Finally, beat locations are
estimated by generating an artificial pulse train with the es-
timated periodicity and by cross-correlating it with the onset
sequence. Maximum values of this function marks the start-
ing of a beat location. A sample beat extraction and local-
ization process is given in Fig. 8.

Beat information allows estimating the tempo for each
dance figure, typically ranging between 60 and 200 BPM.
Analysis results of our experiments show that the average
tempo is 185 BPM for salsa and 134 BPM for belly. We
have also observed that a salsa dance figure in our training
video comprises 8 beats whereas a belly dance figure cor-
responds to 3 beats. We make use of this information in the
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synthesis step to determine the beginning and ending frames
of a dance figure.

5 Synthesis

The goal of the synthesis stage is to generate the corre-
sponding body posture parameters synchronized with a test
musical audio signal. The first task is to classify the audio
signal with respect to its genre (salsa or belly in our case)
over sliding windows. For this, we use MFCCs and em-
ploy the HMM-based classification technique described in
[8]. The classified audio tracks are then analyzed to extract
the beat and tempo information via the method explained in
Sect. 4.2. The genre of the audio track determines the dance
figure to be synthesized (recall that in our training video
there is only one single figure associated with each genre)
whereas the beat locations and the tempo information deter-
mine the duration and location of the figure. We note that the
beat frequency for the same dance figure may vary within a
musical audio signal or from one piece to another.

The body posture parameters corresponding to each
dance figure are generated using the associated HMM struc-
tures, which are trained in the motion analysis stage (see
Sect. 4.1). For each dance figure, we construct a single
HMM structure by coupling the individual HMMs that are
trained separately for the torso and the upper and lower parts
of the body. The states of each such coupled HMM structure
correspond to the motion patterns that form the dance fig-
ure. The state transition probabilities are calculated from
the co-occurrence matrices of audio beat numbers and video
labels. Having the state sequences and the observation prob-
abilities that are modeled as Gaussian distributions, the body
posture parameters are generated along the state sequences
associated with the corresponding Gaussian distribution at
each state. The dance figure boundaries are overlapped and
averaged in order to generate smoother figure-to-figure tran-
sitions.

The generated body posture parameters are the sequences
of either joint angles or 3D joint positions. That is, one may
choose to use the set of HMMs (remember that we have
three separate HMMs for the torso, and the upper and lower
parts of the body) that result from joint angles analysis to
synthesize a sequence of joint angles synchronized with the
given test audio file. One can also do the same thing with the
set of HMMs (remember that in this case we only have two
separate HMMs for the upper and lower parts of the body)
that result from 3D joint positions analysis instead.

Finally, the generated body posture parameters are
smoothed using median filtering followed by a Gaussian
low-pass filter to remove motion jerkiness within a state and
in the transition from one state to another.

It is crucial to note that the use of HMMs for dance fig-
ure synthesis provides us with the ability of introducing ran-
dom variations in the synthesized body motion patterns for
each dance figure. These variations make the synthesis re-
sults look more natural due to the fact that humans perform
slightly varying dance figures at different times for the same
musical piece. Another important thing is that the use of
HMMs for synthesis enables us to generate dance figures
with varying durations in accordance with the beat informa-
tion of the given musical audio signal.

6 Animation

We have designed two different animation tools to visual-
ize the output of our analysis-synthesis system. Depending
on the type of the parameter set used during the analysis-
synthesis process, we either animate a stick figure that is
driven by a set of 3D joint positions or a 3D model that is
controlled by a set of joint angles.

For stick figure animation, we developed an OpenGL
based console application that is capable of animating a
given set of point coordinates in 3D. The application can
generate an animation of moving vertices without connect-
ing them to each other. When the hierarchical connectivity
information of the input point coordinates is available, the
program generates the stick figure representation by con-
necting the neighboring vertices with edges. It also provides
basic functionalities such as rotation, zooming in/out and
panning the stick figure on the screen as well as capturing a
single frame as an image or a sequence of frames as a video
file. Despite depending on a simple idea, this tool proves
to be useful when one wants to observe the success of the
analysis-synthesis process, quickly and easily, especially in
the case of 3D joint positions.

For avatar model, we use a free 3D model named Dou-
glas F. Woodward shown in Fig. 9 with 9599 vertices and
16155 faces. The model comes with segmented hierarchy,
which lets us create a kinematic chain of segments in a con-
ventional directed acyclic graph (DAG) structure.

We have decided to implement a generic synthetic body
representation and animation tool instead of relying on a
single model. Our tool, namely Xbody, can open models in
3DS format and display the DAG and submesh info and en-
ables labeling of the segments for animation as can be seen
in Fig. 9. For rendering, Xbody relies on OpenGL and ex-
isting Xface [17] codebase. We implemented an additional
forward kinematics pipeline for rendering and animation of
DAG.

As for animation, the generated set of joint angles by
the analysis-synthesis process can be fed to Xbody and an-
imated with the same frame per second of video. The pre-
viewing interface of the tool enables us to inspect each frame
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Fig. 9 Xbody DAG view and labelling pane Fig. 10 Xbody preview pane

Fig. 11 Evolution of the logarithmic probability of the model match with varying number of states for the 6 HMM structures in the case of joint
angles (three for salsa on the left and three for belly on the right)

Fig. 12 Evolution of the logarithmic probability of the model match with varying number of states for the 4 HMM structures in the case of 3D
joint positions (two for salsa on the left and two for belly on the right)
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Fig. 13 For the salsa figure, variation of the means of three parameters over the HMM states (plotted in red) and evolution of the same three
parameters during four different realizations sampled from the training video (plotted in blue)

by entering the frame number and using rotation, zooming
in/out and panning the model on the screen. In Fig. 10, a
preview of the synthesis results for belly dance in the case
of joint angles is shown. The tool can also export the anima-
tion as a video file in AVI format.

As its current state, Xbody can be used for better ana-
lyzing the results of motion tracking algorithms and HMM
based motion generation.

7 Experiments and results

Our training dataset includes multiview video recordings of
two dance performances, one for salsa and one for belly,
each with a duration of approximately 5 minutes. The per-
formances are recorded synchronously from 6 cameras at 30
fps. Each video recording consists of one single dance figure
repeated successively during the whole performance.

For motion analysis, we manually label the start and end
frames of each dance figure throughout the entire dance

recordings. Recall that we have 3 HMMs for the case of
joint angles and 2 HMMs for the case of joint positions.
These HMM models of each dance figure are trained in a
supervised manner with the body posture parameters cap-
tured from the manually labeled segments, respectively in
the case of joint angles and joint positions.

In order to determine the optimal number of states for
each of the HMMs, we train each HMM with different num-
ber of states (varying from 2 to 19). By computing the av-
erage logarithmic probability of the model match for each
value, we examine the progression of the learning process
and the accuracy of the trained model. The evolution of this
parameter in the case of joint angles for the totality of the
6 HMM structures that we trained is displayed in Fig. 11.
The evolution of the same parameter in the case of joint
positions for the totality of the 4 HMM structures that we
trained is displayed in Fig. 12. We observe that the optimal
number of states is related to the complexity of the dance
figure. In the case of the salsa figure, which is more com-
plicated than the belly, the optimal numbers are greater than
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Fig. 14 For the belly figure, variation of the means of three parameters over the HMM states (plotted in red) and evolution of the same three
parameters during four different realizations sampled from the training video (plotted in blue)

those for the belly figure. To determine the optimal number
of states, we basically search for the peak in the plot, or the
point where the plots start to saturate since we also want to
keep the number of states, and hence the model complexity,
as low as possible.

In order to verify that the posture parameters are correctly
modeled with the resulting HMMs, in Fig. 13 and Fig. 14,
we compare, for some of the parameters, the evolution of the
means of their Gaussian distributions over the HMM states
with the evolution of the same parameters through the real-
izations of the corresponding dance figures in the training
data set. The shapes of the evolution are clearly observed to
be similar, even for the parameters which show significant
variations from one realization to another in the training set
and are thus difficult to model.

The musical audio signals are recorded at 16 kHz as 16
bit mono PCM wavefiles. The signals are analyzed over a
25 ms Hamming window at every 10 ms. The set of 13
MFC coefficients along with their first and second deriva-

tives, adding up to a total of 39 features, forms the audio fea-
ture vector for the genre classification task. Using MFCCs as
the only audio feature set becomes sufficient for the classifi-
cation problem in our case, since we have only two types of
musical audio, salsa and belly.

We have considered several animation scenarios for
demonstration of our dancing avatar. In the first scenario,
we mix two audio tracks of different genres, salsa and belly,
and use this mixed track as the animation audio to show
that the avatar can successfully recognize the changing au-
dio and synthesize the correct dance figures. In the second
scenario, we first slow down and then speed up the audio
track to demonstrate that the avatar can keep track of the
changing beat information and adjust the speed of the dance
movements accordingly. In the final scenario, we take an ar-
bitrary audio which is neither salsa nor belly to see how the
avatar adapts itself to a different genre that it has not been
trained for. We applied these three scenarios on analysis-
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synthesis results of both joint angles parameter set and 3D
joint positions parameter set.1

8 Conclusions and future work

We have developed a framework for audio-driven human
body motion analysis and synthesis. We have addressed the
problem in the context of dance performance and consid-
ered the most simplistic scenario possible in which only a
single dance figure is associated with each musical genre.
Currently, our dancing avatar has been trained for salsa and
belly. The experiments show that the avatar can successfully
recognize the genre changes in a given audio track and syn-
thesize the correct dance figures in a very realistic manner.
The avatar can also keep track of the changing beat informa-
tion and adjust the speed of the dance movements accord-
ingly.

A crucial task during avatar training is to capture the mo-
tion of the dancer in an accurate manner. For this, we have
developed a marker-based algorithm based on annealing par-
ticle filtering, that can automatically extract the human pos-
ture from multiview video without any human intervention.
We also performed an alternative marker-based tracking al-
gorithm with human intervention. This alternative method
provided us with a reference for the tracking results obtained
by the algorithm based on annealing particle filtering. Nev-
ertheless, we used both parameter sets to analyze the correla-
tion between body posture and audio, and to synthesize body
posture parameters when driven by an audio signal. We com-
pared the analysis-synthesis results of both parameter sets
on several animation scenarios by using a dancing avatar.

Our future work will involve unsupervised training of our
dancing avatar for different musical genres in more com-
plicated scenarios in which the dance figures are more so-
phisticated in structure, having certain syntactic rules and
hierarchies of figures. To achieve this, we will also need to
consider various musical audio features other than beat and
tempo, such as tonality, harmony and melody.

Acknowledgements A part of this work is developed during the
ENTERFACE’07 Summer Workshop on Multi-Modal Interfaces2 and
it has been supported by the European Sixth Framework Programme
Network of Excellence SIMILAR,3 by the Scientific and Technologi-
cal Research Council of Turkey (TUBITAK)4 under project EEEAG-
106E201 and COST Action: 2102.5 A. Murat Tekalp acknowledges
support from Turkish Academy of Sciences (TUBA).6

1Demo videos for audio-driven dance figure analysis-synthesis system.
Available at http://mvgl.ku.edu.tr/bodymotionanalysis/jmui/7.
2http://www.enterface.net/.
3http://www.similar.cc/.
4http://www.tubitak.gov.tr/.
5http://www.cost2102.eu/.
6http://www.tuba.gov.tr/.

References

1. Chen T (2001) Audiovisual speech processing. IEEE Signal
Process Mag 18(1):9–21

2. Bregler C, Covell M, Slaney M (1997) Video rewrite: driving vi-
sual speech with audio. In: SIGGRAPH ’97: Proceedings of the
24th annual conference on computer graphics and interactive tech-
niques, New York, NY, USA. ACM Press/Addison-Wesley, New
York, pp 353–360

3. Brand M (1999) Voice puppetry. In: SIGGRAPH ’99: Proceed-
ings of the 26th annual conference on computer graphics and in-
teractive techniques, New York, NY, USA. ACM Press/Addison-
Wesley, New York, pp 21–28

4. Li Y, Shum H (2006) Learning dynamic audio-visual mapping
with input-output hidden Markov models. IEEE Trans Multime-
dia 8(3):542–549

5. Ofli F, Erzin E, Yemez Y, Tekalp AM (2007) Estimation and analy-
sis of facial animation parameter patterns. In: IEEE International
conference on image processing

6. Sargin ME, Erzin E, Yemez Y, Tekalp AM, Erdem AT, Erdem C,
Ozkan M (2007) Prosody-driven head-gesture animation. IEEE Int
Conf Acoustics Speech Signal Process 2:677–680

7. Sargin ME, Aran O, Karpov A, Ofli F, Yasinnik Y, Wilson S, Erzin
E, Yemez Y, Tekalp AM (2006) Combined gesture—speech analy-
sis and speech driven gesture synthesis. In: IEEE international
conference on multimedia and expo, pp 893–896

8. Bagci U, Erzin E (2007) Automatic classification of musical gen-
res using inter-genre similarity. IEEE Signal Process Lett 14:521–
524

9. Ehara Y, Fujimoto H, Miyazaki S, Tanaka S, Yamamoto S (1995)
Comparison of the performance of 3d camera systems. Gait Pos-
ture 3:166–169

10. Ehara Y, Fujimoto H, Miyazaki S, Mochimaru M, Tanaka S, Ya-
mamoto S (1997) Comparison of the performance of 3d camera
systems II. Gait Posture 5:251–255

11. Bregler C, Malik J (1998) Tracking people with twists and ex-
ponential maps. In: IEEE international conference on computer
vision and pattern recognition

12. Deutscher J, Reid I (2005) Articulated body motion capture by
stochastic search. Int J Comput Vis 61:185–205

13. Canton-Ferrer C, Casas JR, Pardàs M (2005) Towards a Bayesian
approach to robust finding correspondences in multiple view
geometry environments. In: Lecture notes on computer science,
vol 3515. Springer, Berlin, pp 281–289

14. Arulampalam M, Maskell S, Gordon N, Clapp T (2002) A tutor-
ial on particle filters for online nonlinear/non-Gaussian Bayesian
tracking. IEEE Trans Signal Process 50(2):174–188

15. Young S (1993) The htk hidden Markov model toolkit: design and
philosophy. Technical Report TR. 153, Speech Group, Department
of Engineering, Cambridge University (UK)

16. Alonso M, David B, Richard G (2004) Tempo and beat estimation
of music signals. In: International conference on music informa-
tion retrieval

17. Balci K, Not E, Zancanaro M, Pianesi F (2007) Xface open source
project and smil-agent scripting language for creating and animat-
ing embodied conversational agents. In: MULTIMEDIA ’07: Pro-
ceedings of the 15th international conference on Multimedia, New
York, NY, USA. ACM Press, New York, pp 1013–1016

http://mvgl.ku.edu.tr/bodymotionanalysis/jmui/7
http://www.enterface.net/
http://www.similar.cc/
http://www.tubitak.gov.tr/
http://www.cost2102.eu/
http://www.tuba.gov.tr/

	An audio-driven dancing avatar
	Abstract
	Introduction
	System overview
	Multicamera body motion tracking
	Initialization
	Tracking the 3D joint positions
	Tracking the joint angles

	Multimodal analysis
	Body motion analysis
	Audio analysis

	Synthesis
	Animation
	Experiments and results
	Conclusions and future work
	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


