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When a person enters a room, he or she immediately develops a mental concept about
“what is going on” in the room; for example, people may be working in the room,
people may be engaged in a conversation, or the room may be empty. The CHIL ser-
vices depend on just the same kind of semantic description, which is termed activity
in the following. The “Connector” or the “Memory Jog”, for example, could provide
support that is appropriate for the given context if it knew about the current activity
at the user’s place. This kind of higher-level understanding of human interaction pro-
cesses could then be used, e.g., for rating the user’s current availability in a certain
situation.

The recognition of activities depends on many factors such as the location and
number of people, speech activity, and the location and state of certain objects. The
perceptual technologies like person tracking, identification, or acoustic event detec-
tion provide important information upon which the higher-level analysis of the activ-
ity can be based. Due to the complexity of the scene, there are, however, potentially
relevant phenomena such as a door being half-opened, which – due to their high num-
ber and variability – cannot be addressed by manually designed detectors at large.
Therefore, activity recognition may need to directly analyze the observation in order
to find out what is relevant and what is not to detect a certain activity.

Activity recognition may be facilitated by the detection of events, which are se-
mantic descriptions for actions that have a short duration and/or are limited to a small
area of the room, such as “a person enters/leaves the room”. In this case, activities
are being recognized by their characteristic sequence of events.

This chapter describes three systems that have been implemented for (1) the
recognition of events inside the CHIL room based on person tracking and a prob-
abilistic syntactic approach, (2) person activity classification using body gestures,
and (3) event recognition and room-level tracking in multiple office rooms based on
low-level audiovisual features.
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11.1 Visual Activities Recognition in a Smart-Room Environment
Using a Probabilistic Syntactic Approach

In a smart-room environment, it is necessary to determine the type of interactions
among the people in the room in order to perform context-dependent actions. More-
over, some specific situations need to be identified by the system. For this aim, a
system based on [6], which analyzes activities using stochastic parsing, has been
developed by adapting it to the specific requirements of smart-room environments.
The fundamental idea of [6] is to divide the recognition problem into two levels. The
lower-level detections are performed using standard independent probabilistic event
detectors to propose candidate detections of low-level features. The outputs of these
detectors provide the input stream for a stochastic, context-free, grammar-parsing
mechanism. The system can be divided into three modules: the tracking system, the
events generator, and the parser. The tracking system [7] takes as input the multi-
camera video sequence, reconstructs the 3D objects in the room using a foreground
detection for each camera, and performs the tracking of the various detected objects.
Thus, for each frame in the video sequence, we require N views from the calibrated
cameras. Foreground regions are obtained for each camera using an algorithm based
on Stauffer and Grimson’s background learning and subtraction technique [12]. A
Shape from Silhouette procedure is used next in order to generate a discrete occu-
pancy representation of the 3D space (voxels) to decide whether a voxel is in the
foreground or background by checking the spatial consistency of the N segmented
silhouettes. Afterwards, a connectivity filter is introduced in order to remove isolated
voxels and the remaining multiple RoIs are labeled in accordance with the results of
a tracking procedure, as described in Chapter 3. The events generator and the parser
are described in the following.

11.1.1 Events Generation

The main objective of the events generator is to provide the chain of events that the
parser will take as input. The inputs to the events generator are the ones delivered by
the tracking system: object identifier, number of frame, position (x, y, z), velocity, and
volume of each object. Moreover, the output of the multicamera 3D person and object
tracker is enriched by (1) an algorithm that is able to distinguish between an object
and a person – assuming an average range of physical properties of adult humans –
and (2) an algorithm that analyzes human body posture (standing, sitting, etc.) with a
standard model of the human body that is aligned to the 3D regions of interest earlier
classified as a person. This information is used together with some configuration
information about the room (table, chair, and whiteboard position, dimensions of
the room) to produce the events detection using simple grammars. The list of events
detected by this module is the following: {“Person enters in the room”, “Person
exits from the room”, “A person is lost in the room”, “A person is found in the
room”, “A person sits down”, “A person moves inside the room”, “A person stops”,
“A person stands up”, “A person is detected in the whiteboard area”, “A new object
is detected in the room”, “An object disappears from the room”, “The volume of
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a person increases”, “The volume of a person decreases”, “A group of people is
detected”, “A person is divided in two”}.

11.1.2 Video Activity Recognition

The video activity recognition is performed by the parser. Its function is as follows:
Given a chain of events and a stochastic, context-free grammar, find the chain deriva-
tion with the maximum probability, if it exists. The parser we have used is based on
the CYK algorithm [14]. It performs an ascendant analysis, considering subtrees
from the leaves up to the root. The activities the system currently recognizes are the
following:

• meeting,
• presentation,
• conversation between two people,
• leave an object ,
• take an object.

The video sequence is first analyzed with the tracking and event generators system.
The generated chain of events is input to the parser, which analyzes the chain using
the grammar corresponding to these classes. In order to generate more appropriate
grammars, we have implemented a training system to generate the grammars for
the different classes we want to learn. The Inside-Outside algorithm [8] is used to
estimate the probability of the production rules of the stochastic, context-free gram-
mars using the video sequences created for training. The production rules have been
manually designed.

11.1.3 Experiments

To test the system, we have used 50 recordings where the five defined activities occur.
The recordings have been done in a smart room with four fixed cameras in the corners
plus a zenithal camera. An example of four frames corresponding to a “presentation”
recording is shown in Fig. 11.1, together with a projection of the reconstructed blobs.
The recognition results span from 60% recognition for the activities “conversation”
and “take an object” to 87.5% for “presentation”, with a mean correct recognition
rate of 70%.

11.2 Person Activity Classification Using Gestures

Some activities of the persons in the room cannot be recognized using only the per-
son tracking results and the 3D reconstructed objects. Human motion descriptors add
the necessary information for classifying person activities that involve the motion of
the body limbs. We have developed a view-independent approach to the recogni-
tion of human gestures of several people in low-resolution sequences from multiple
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Fig. 11.1. Four frames from a presentation, showing different events that can be detected using
the tracks. The first row shows the images from one camera and the second row a projection
of the 3D detected blobs. The event detected in the images of the first and second columns is
“person enters”. The third column corresponds to “person at whiteboard” and “person sits”,
while in the image of the last column, a “person exits” is detected.

calibrated cameras [3]. In contrast to other multi-ocular gesture recognition systems
based on generating a classification on a fusion of features coming from different
views, our system performs a data fusion (3D representation of the scene) and then
a feature extraction and classification. Motion descriptors introduced by Bobick and
Davis. [1] for 2D data are extended to 3D and a set of features based on 3D invariant
statistical moments is computed. A simple ellipsoid body model is fit to incoming 3D
data to capture in which body part the gesture occurs, thus increasing the recognition
ratio of the overall system and generating a more informative classification output.
Classification is thus performed by jointly analyzing the motion features and the
body position data obtained by fitting the ellipsoid body model. Finally, a Bayesian
classifier is employed to perform recognition over a small set of actions. The actions
that are more relevant to the smart-room scenario are raising hand, sitting down,
and standing up. However, we have tested the system including other actions such
as waving hands, crouching down, punching, kicking, and jumping. The approach
taken relies on the 3D reconstruction of the detected persons. Thus, the system uses
as input the same data described in Section 11.1, that is, the multiple RoIs labeled
coherently along time, corresponding to the persons in the room. In the following, we
describe the approach taken to analyze the person’s activity using these input data.

11.2.1 Motion and Body Analysis

In order to achieve a simple and efficient low-level, view-dependent motion repre-
sentation, [1] introduced the concept of motion history image (MHI) and motion en-
ergy image (MEI). We extended this formulation to represent view-independent 3D
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(a)

(b)

Fig. 11.2. Example of motion descriptors. In (a) and (b) are depicted the 2D projections of
MEV and MHV, respectively, for sitting down and raising hand.

motion. In this way, ambiguities generated by occlusions are overcome. Analogously
to [1, 2], the binary motion energy volume (MEV) Eτ(x, t) captures the 3D locations,
where there is motion in the last τ frames. Motion detection can be coarsely estimated
by a simple forward differentiation among voxel frames, still leading to satisfactory
results while preserving a reduced computational complexity. Figure 11.2(a) depicts
an example of MEV.

To represent the temporal evolution of the motion, we define the motion history
volume (MHV) Hτ(x, t), where each voxel intensity is a function of the temporal his-
tory of the motion at that 3D location. An example of MHV is shown in Fig. 11.2(b).

In order to extract a set of features describing the body of a person performing
an action, a geometrical configuration of the human body must be considered. An
ellipsoid model of the human body has been adopted and, in spite of this fairly sim-
ple approximation compared with more complex human body models, classification
results proved the validity of our assumption, as shown in Section 11.2.3.

After obtaining the set of voxels describing a given person, we fit an ellipsoid
shell to model it. This information is then fed to a body-tracking module that refines
this estimation by taking into account body anthropometric restrictions, imposing
some motion and size constraints compatible with human bodies [4]. For example,
the height of a person restricts the possible locations of arms and legs according to the
average lengths of body parts. Finally, time consistency of the ellipsoid parameters
is achieved by a Kalman filter.

Once the parameters of the ellipsoid representing the human body are computed,
a simple body part classification can be derived. Voxels can be labeled as belonging
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to four categories: left/right arm/leg (see Fig. 11.3). These data will be used while
classifying an action jointly with motion information.

(a)

(b)

Fig. 11.3. Body analysis module output. In (a), original images for kick and arise hand. In
(b), voxels belonging to the body of the person are labeled as belonging to right/left arm/leg
categories.

11.2.2 Feature Extraction and Gesture Classification

Data produced by the motion and body analysis modules are processed to extract a
vector of features for classification.

Informative features derived from the analyzed data (MHV and MEV in our case)
are required to represent motion in a low-dimensional space. Statistical moments in-
variant to scaling, translation, rotation, and affine mappings were introduced by [5].
Three-dimensional invariant statistical moments [9] were used in our case. For each
data set Eτ (x, t) and Hτ (x, t), two invariant moment-based feature vectors were com-
puted, ψMEV and ψMHV, each comprising five components.

Information from body parts provided by the body analysis module can be used
to generate additional features. Let ψBODY denote the four features describing the
relative amount of motion voxels located in each body part. Given the computed
moment-based motion features and the body features obtained for each of the ac-
tions to classify ω j, 0 ≤ j < K, we define a full 14-dimensional feature vector
Γ = [ψMEVψMHVψBODY]. The dimensionality of Γ can be further reduced through
principal components analysis (PCA). By analyzing the training data, we noticed
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Fig. 11.4. Classifier performance evaluated with motion and body features depending on the
order of the PCA analysis.

that 90% of the variance of the data was achieved by doing a dimension reduction to
d = 7. Let us refer to the data set obtained after PCA analysis as Γ̂ .

The classification method is based on a Bayesian classification criterion assum-
ing that p(Γ̂ |ω j) is normally distributed and estimating the mean and covariance
matrix of each class with the training data.

11.2.3 Experiments

In order to evaluate the performance of the proposed algorithm, we collected a set
of 70 training and 30 testing multiview sequences of each action to be recognized.
The gesture category set was formed by eight common actions of interest in the
field of human-computer interfaces such as raising hand, sitting down, waving hands,
crouching down, standing up, punching, kicking, or jumping. Moreover, to show
the effectiveness of our method and its robustness against rotations, occlusions, and
position, actions were recorded in different positions inside the room and facing
various orientations.

In average, we got a p(error) = 0.0154. Experiments have been carried out with
and without these features to show the influence of body part features on the overall
performance. Figure 11.4 depicts the behavior of the classifier for diverse orders of
the PCA analysis showing that body features increase the performance of the system.
The experimental results prove the efficiency of our method, proposing an alternative
to the classical methodology to multi-ocular and mono-ocular motion-based gesture
analysis [1, 11, 2].
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11.3 Activity Recognition and Room-Level Tracking in an Office
Environment

The previously described approaches use the output from a person tracker to infer
people’s activities. In this work [13], we bypass the tracker and try to infer human
activity directly from the camera image. This is motivated by the fact that person
tracking is computationally expensive, requires a rich sensor setup, and is still not
100% reliable. Furthermore, the recognition of human activity may not depend only
on the location and pose of the human body, but also on the state of objects like doors
or chairs. Therefore, we are following an appearance-based approach and develop an
activity recognition system that operates directly on the data from a single fixed
camera and a single microphone per room.

We decompose activities in two classes, namely events and situations, both car-
rying a semantic meaning. In our case, events are defined to be visible or audible
short-term phenomena that are spatially limited to a small area. In the presented
application, we detect events like PERSON SITTING AT A DESK or PERSON ENTER-
ING/LEAVING AN OFFICE; i.e., we focus on events that are triggered by humans. In
contrast to events, we define situations to range over a longer period of time and
space. Situations that are to be distinguished by our system span the entire room:
MEETINGS, DISCUSSIONS, PAPERWORK, PHONE CALLS, or NOBODY PRESENT.
They were chosen manually by observing the recorded data. The objective was to
cover a maximum share of daily office activities in a real-world setting.

The experimental activity recognition system spans four office rooms, each occu-
pied by one or two members of the lab, as well as the local lab room (see Fig. 11.5).
Each room is equipped with a sparse sensor setup consisting of a single camera and
one omnidirectional microphone.

Fig. 11.5. Plan view of the rooms that were monitored for activity recognition.
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Using only simple low-level features such as motion and optical flow for the
video modality and signal energy, zero crossing rate, and pitch for audio, we employ
a multilevel HMM activity recognition framework (see Fig. 11.6). Decomposing the
parameter space into several layers reduces the amount of training data required and
gives a better intuition on the learning process [10, 15]. The lower level detects events
and passes them on to the situation layer. The situation layer infers room situations
based on the sequence of detected events. Each layer can be trained on labeled data
on its own by employing the well-known Baum-Welch parameter estimation algo-
rithm.

Fig. 11.6. Structure of the multilayer HMM for a single office. The lower level recognizes
events, whereas the higher level represents room situations.

Knowing who is where on a room-level scale is the natural complement to situ-
ation recognition within the individual rooms. We track the users by inferring their
locations from the sequence of events recognized by the first activity layer. We are
thus exploiting common constraints like the fact that office workers tend to have a
dedicated workplace that they use most of the time exclusively.

The method does not rely on conventional person identification or tracking tech-
niques, which often pose restrictions for practical deployment due to their high sen-
sory and computational requirements. Our approach exploits a Bayesian filter frame-
work in a discrete state space, where the state vector contains the belief that a certain
person is in a certain room or out of sight. The key problem of this multiperson
tracking task is to assign observed events to the correct track, which is known as
data association problem. A separate tracker is run for each person and data associa-
tion is performed in two stages: A nearest-neighbor filter is applied to consider only
the observations for the belief update that are occurring close to the highest belief
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state. Moreover, the observation model is designed in a way that persons can only be
observed at certain places depending on the room.

It is again important to note that this tracking approach does not use appearance
models to identify the individual users directly, but instead aims to infer the user’s
locations only from the sequence of events that are recognized by the first layer of
the activity recognition model. The output of the system is the room in which the
person is currently located – and not its precise location within that room.

11.3.1 Features

Due to the changing light conditions, any illumination-dependent cue such as his-
togram backprojection to identify skin color would be error-prone. Moreover, per-
sons are perceived from just one camera view. Depending on their orientation, we
get either frontal, side, or back views of their head, so that face detectors can hardly
be employed to determine the number of persons in the room. Therefore, we are con-
centrating on simple but fast video features that are robust against varying lighting
conditions: adaptive background subtraction and optical flow.

On the audio side, we use speech activity detection, which is an important cue to
determine people’s current occupation. In our office scenario, it helps, for example,
to separate visually similar classes like PAPERWORK and DISCUSSIONS. In order to
detect speech activity, we calculate signal power, zero crossing rate, and pitch and
process them with an audio classification HMM.

The key problem is to decide which regions of the input image are relevant for
certain events. In our approach, we consider the relevant foreground regions of a
certain activity to be the components of a Gaussian mixture. This allows a data-driven
learning approach with the well-known EM algorithm. Features are then extracted
from the enclosed areas of each mixture component within three standard deviations.
Together these features are capable of describing a scene by the amount of motion
with the dominant direction, while preserving rough location information.

Fig. 11.7. Three Gaussian mixture components obtained from data-driven clustering. They
represent areas where users often sit.
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11.3.2 Experiments

For the activity recognition part, we collected data from six work days with a total
length of about 34.8 hours, of which we used four days for training and two days for
evaluation. To obtain ground-truth labels, the data were annotated manually. On this
data set, the recognition rate of the events ranged between 63% for “visitor behind
user’s desk” and 100% for “somebody enters”. The situations were recognized with a
recognition rate of 70−96% depending on the type of situation; for details, see [13].

As this set of data contained only a few events of people changing offices, we
recorded a second set with a scripted sequence of 44 events with a length of about
one hour and we used it to evaluate room-level tracking. As the hallway was not
monitored due to privacy reasons, blind gaps occurred between the cameras. On
average, we could track the location of all seven people in 91.5% of the frames,
and 36 of 44 transitions were correctly recognized. Table 11.1 shows ground-truth
and tracking results for one of the tracked persons.

Ground Truth Tracking Results
Begin End Place Place Begin End

0 32 Office B Office B 0 41
46 68 Lab Lab 49 75
77 800 Office B Office B 81 809

809 1110 Office D Office D 810 1102
1117 2194 Office B Office B 1103 2197
2194 2484 Office A Office A 2198 2496
2496 2660 Office D Office D 2497 2671
2668 3248 Office B Office B 2672 3263
3248 3389 Out of view Out of view 3264 3382
3389 3685 Office B Office B 3383 3687
3685 3699 Lab Lab 3688 3705
3709 3719 Office A

Office D 3709 3925
3719 3926 Office B

Table 11.1. Example trajectory for user #4 (times are given in seconds); for the sake of read-
ability, OUT OF SIGHT is not listed for state durations of less than 30 seconds.

11.4 Conclusion

In the course of the CHIL project, three different approaches for automatic activity
recognition have been implemented and evaluated. They are different in terms of
the set of activities they classify, the features they use, and the actual classification
method.

The first system is oriented to the recognition of room-level activities and thus
uses only the detected volumes and the room configuration information as input.
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It can detect interactions between people or between people and objects as well as
classify the kind of activity that takes place in the smart room according to the pre-
defined classes (meeting, conversation, etc).

The second system is oriented to the recognition of activities on a person level.
For these kinds of activities, motion descriptors as well as a simple human body
model are used, together with the foreground volumes. With the experiments carried
out, we have concluded that a set of human body activities can be efficiently distin-
guished without requiring a complex human body model analysis that implies a high
computational cost.

The third system works with a sparse sensor setup of one camera and one micro-
phone per room. Events are detected based on a data-driven analysis of the sensor
data. Based on the sequence of events, both office activities as well as the location of
people on a room-level scale could then be inferred.

It is obviously hard, if not impossible, to find a common definition and methodol-
ogy for activity recognition that fits all application domains. The current systems are
dedicated to certain domains like office situations and meetings. They define a small
set of activities that are specific and relevant within their domain, and they proved
to be able to recognize the activities on in-domain test data. Future work, on the one
hand, could try to extend the application domains, while, on the other hand, it could
aim for a more detailed analysis of the activities within one domain.

One lesson learned in the CHIL project was that the development of an activity
recognition system needs to be application-driven: The consumer of the information
– for example, the Connector or the Memory Jog service – defines the domain and
the set of meaningful activities due to its specific need. Only with that knowledge
can an appropriate activity recognizer be designed.

References

1. A. F. Bobick and J. W. Davis. The recognition of human movement using temporal
templates. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(3):257–
267, 2001.

2. G. Bradski and J. Davis. Motion segmentation and pose recognition with motion history
gradients. Machine Vision and Applications, 13(3):174–184, 2002.

3. C. Canton-Ferrer, J. R. Casas, and M. Pardàs. Human model and motion based 3D action
recognition in multiple view scenarios (invited paper). In 14th European Signal Process-
ing Conference, EUSIPCO, University of Pisa, Florence, Italy, 4–9 Sept. 2006.

4. S. Dockstader, M. Berg, and A. Tekalp. Stochastic kinematic modeling and feature ex-
traction for gait analysis. IEEE Transactions on Image Processing, 12(8):962–976, 2003.

5. M. Hu. Visual pattern recognition by moment invariants. IEEE Transactions on Informa-
tion Theory, 8(2):179–187, 1962.

6. Y. A. Ivanov and A. F. Bobick. Recognition of visual activities and interactions by
stochastic parsing. IEEE Transactions on Pattern Analysis and Machine Intelligence,
22:852–872, 2000.

7. J. L. Landabaso and M. Pardas. Foreground regions extraction and characterization
towards real-time object tracking. In Machine Learning for Multimodal Interaction
(MLMI), LNCS 3869, pages 241–249. Springer, 2006.



11 Activity Classification 119

8. K. Lari and S. Young. The estimation of stochastic context-free grammars using the
inside-outside algorithm. Computer, Speech and Language, 4:35–56, 1990.

9. C. Lo and H. Don. 3-D oment forms: Their construction and application to object identifi-
cation and positioning. IEEE Transactions on Pattern Analysis and Machine Intelligence,
11(10):1053–1064, 1989.

10. N. M. Oliver, B. Rosario, and A. Pentland. A Bayesian computer vision system for model-
ing human interactions. IEEE Transactions on Pattern Analysis and Machine Intelligence,
22(8):831–843, 2000.

11. R. Rosales. Recognition of human action using moment-based features. Boston Univer-
sity Computer Science Technical Report, BU, pages 98–120, 1998.

12. C. Stauffer and W. E. L. Grimson. Learning patterns of activity using real-time tracking.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8):747–757, 2000.

13. C. Wojek, K. Nickel, and R. Stiefelhagen. Activity recognition and room level tracking
in an office environment. In IEEE International Conference on Multisensor Fusion and
Integration for Intelligent Systems, Heidelberg, Germany, Sept. 2006.

14. D. H. Younger. Recognition and parsing of context-free languages in time n3. Information
and Control, 10:189–208, 1967.

15. D. Zhang, D. Gatica-Perez, S. Bengio, and I. McCowan. Semi-supervised adapted HMMs
for unusual event detection. In Computer Vision and Pattern Recognition, pages 611–618,
2005.


