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Abstract 
The detection of the acoustic events (AEs) that are naturally 
produced in a meeting room may help to describe the human 
and social activity that takes place in it. When applied to 
spontaneous recordings, the detection of AEs from only audio 
information shows a large amount of errors, which are mostly 
due to temporal overlapping of sounds. In this paper, a system 
to detect and recognize AEs using both audio and video 
information is presented. A feature-level fusion strategy is 
used, and the structure of the HMM-GMM based system 
considers each class separately and uses a one-against-all 
strategy for training. Experimental AED results with a new 
and rather spontaneous dataset are presented which show the 
advantage of the proposed approach.  
Index Terms: acoustic event detection, multimodality, 
multimodal fusion, hidden Markov models, acoustic 
localization 

 

1. Introduction 
In context-aware systems such as smart rooms or intelligent 
personal devices, Acoustic Event Detection (AED) can 
provide support for a high-level analysis of the underlying 
acoustic scene. This analysis includes the description of 
human activity which is reflected in a rich variety of AEs, 
either produced by the human body or by objects handled by 
them. Moreover, AED can contribute to improve the 
performance and robustness of speech technologies such as 
speech and speaker recognition, and speech enhancement.  

Although speech is usually the most informative AE, other 
kind of sounds may carry useful cues for scene understanding. 
For instance, in a meeting/lecture context, we may associate a 
chair moving or door noise to its start or end, cup clinking to a 
coffee break, or footsteps to somebody entering or leaving. 
Furthermore, some of these AEs are tightly coupled with 
human behaviors or psychological states: coughing or paper 
wrapping may denote tension; laughing, cheerfulness; 
yawning in the middle of a lecture, boredom; keyboard typing, 
distraction from the main activity in a meeting; and clapping 
during a speech, approval. 

AED is usually addressed from an audio perspective and 
most of the existing contributions are intended for indexing 
and retrieval of multimedia documents [1] or to improve 
robustness of speech recognition [2]. Within the context of 
ambient intelligence, AED applied to give a contextual 
description of a meeting scenario was pioneered by [3]. 
Moreover, AED has been adopted as a semantically relevant 
technology in several international projects [4] and evaluation 
campaigns [5]. According to results from recent evaluations 
on AED [5], the single main factor that accounts for the 

observed low AE detection scores is the high degree of 
overlap between sounds, especially between the targeted 
acoustic events and speech. That overlap problem may be 
faced by developing efficient algorithms that use additional 
modalities that are less sensitive to the overlap phenomena 
present in the audio signal.  

Most of human produced AEs have a visual correlate that 
can be exploited to enhance detection and recognition rates. 
This idea was first presented in [6] where the detection of 
footsteps was improved by exploiting the velocity information 
obtained from a video-based person-tracking system. Further 
improvement has been achieved by the authors in [7] where 
the concept of multimodal AED is extended to detect and 
recognize the set of 11 AEs. In that work, not only video 
information but also acoustic source localization information 
was considered. A decision-level fuzzy integral fusion was 
used to increase the accuracy of detection of isolated AEs. 

In this paper, we compare that previous approach [7] with 
a feature-level fusion strategy and present results for AED on 
new and rather spontaneous data, where the temporal overlaps 
of sounds take place more frequently. Additionally, a new 
HMM-GMM based AED system structure is used which 
considers each class separately and uses a one-against-all 
strategy for training.  

Although the above mentioned meeting-room events are 
no longer acoustic but audio-visual, in this paper we refer to 
acoustic events, because the audio characterization of events 
provides the main description for them. The event is 
considered when it has a specific audio counterpart (sound 
activity), and video information is only an additional source of 
information which is used to enhance the audio mono-modal 
recognition. Actually, in the employed multimodal database, 
the main criterion for annotating a particular instance of a 
given class is the existence of acoustic activity. 

For this research work, a multi-camera and multi-
microphone dataset containing a large number of instances of 
the AEs to be analyzed has been recorded and manually 
annotated, and it is available for research purposes1. 

The rest of this paper is organized as follows: Section 2 
describes the database and metrics used in evaluations. The 
baseline detection system is described in Section 3. In Section 
4 the fusion approach of different modalities is outlined. 
Section 5 presents experimental results and Section 6 
concludes the work. 

2. Database and metrics 
There are several publicly available multimodal databases 
designed to recognize events, activities, and their relationships 
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in interaction scenarios [4]. However, these data are not well 
suited to audiovisual AED since the employed cameras do not 
provide a close view of the subjects under study. A new 
database has been recorded with 5 calibrated cameras at a 
resolution of 768x576 at 25 fps, and 6 T-shaped 4-microphone 
clusters are also employed, sampling the acoustic signal at 
44kHz. Synchronization among all sensors is fulfilled. The 
database includes two kinds of datasets: recordings of isolated 
AEs, where 4 different participants performed 10 times each 
AE, and a more spontaneously generated dataset which 
consists of 9 scenes of about 5 min long with 2 participants 
that interact with each other in a natural way: drink coffee, 
speak on the mobile phone, etc. All AEs appear with a natural 
frequency: for instance, applause appears much less frequently 
(1 instance per scene) than chair moving (around 8 instances 
per scene). 

Manual annotation of the data has been done to get a 
reliable performance evaluation. In order to encourage other 
researchers to work on this multimodal AED field, these 
datasets will be made publicly available. The metric defined in 
[5] is employed to assess the accuracy of the presented 
algorithms. This metric is defined as the harmonic mean 
between precision and recall scores computed for the classes 
of interest. 

It must be mentioned that it is difficult to record a large 
number of AEs in spontaneous gatherings. Indeed, the number 
of AEs present in these recordings is very low, thus requiring 
several hours of data. If we force to produce more events 
during seminar recordings, the resulting AEs are not 
spontaneous anymore. 

3. AED system based only on audio 
features 

A set of spectro-temporal features is extracted to describe 
every audio frame. It consists of 16 frequency-filtered (FF) log 
filter-bank energies with their first time derivatives [8], which 
represent the spectral envelope of the audio waveform within 
a frame (30ms length, 20ms shift, Hamming window), as well 
as its temporal evolution. In audio recognition and retrieval, 
the segments are often modeled via Gaussian Mixture Models 
(GMMs). An alternative approach presented in [3] exploits 
discriminative Support Vector Machines (SVM) models to 
obtain a binary sequence of decisions. In this work, we use 
HMMs, like in [6]. The topology of the detection process is 
depicted in Fig. 1. 
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Figure 1: AED system based only on audio features. 

There are 11 separate systems, each one detecting the 
targeted class “Class”, so segmenting the audio waveform in 
intervals labeled as either “Class” or “nonClass”. Using the 
training approach known as one-against-all method [9], all the 
classes different from “Class” are used to train the “nonClass” 
model. The model for “Class” is a HMM with 3 emitting 
states and left-to-right connected state transitions. 

The observation distributions of the states are Gaussian 
mixtures with continuous densities, and consist of 5 
components with diagonal covariance matrices. The 
“NoClass” model consists of 5 emitting states with 7 Gaussian 
components and left-to-right connected state transitions, as its 
observation distribution is more complex. 

The proposed architecture has several advantages: 
1. For each particular AE, the best set of features is used. 

The features which are useful for detection one class are not 
necessarily useful for other classes. In our case the video 
features are useful only for detection particular classes. 

2. The relation between the number of missings and false 
alarms can be optimized for each particular AE. 

3. In the case of overlapped AEs, the proposed system can 
provide multiple decisions for the same audio segment.   

However this architecture requires multiple detection 
systems instead of one, which makes the detection process 
more complex in the case of a large number of classes. 

Table 1. Comparison between baseline systems. 

Isolated events, 
accuracy AEs 

Bas1 Bas2 
Applause 0.90 0.89 
Cup clink 0.87 0.93 
Chair moving 0.89 0.94 
Cough 0.78 0.81 
Door slam 0.92 0.97 
Key jingle 0.92 0.94 
Knock 0.91 0.91 
Keyboard 0.84 0.96 
Phone 0.69 0.87 
Paper work 0.74 0.85 
Steps 0.18 0.31 

3.1. Analysis of results 

The comparison of two baseline detection systems for dataset 
of isolated AEs is presented in table 1. The first system (Bas1) 
exploits the classical approach, where all AEs are detected 
inside a unique AED system [7]. The second (Bas2) exploits 
the one-against-all topology described in the previous section. 
Almost all events are detected better using the second 
approach. The main reason of such improvement lies in the 
optimization of the tradeoff between missings and false alarms 
for each particular class (the word insertion penalty parameter 
during Viterbi decoding). So this topology is selected for the 
subsequent experiments with the spontaneous dataset. 

Regarding the spontaneous data, the most difficult AEs are 
low-energy events as keyboard typing, paper work, and steps. 
Two types of mistakes are associated with these classes: 
Type I: Overlap mistakes, when two different AEs occur at 
the same moment and the detection system fails to detect both 
of them simultaneously (about 70% of all errors). 
Type II: Confusion mistakes. Appear when the classes sound 
very similar and the AED system fails to distinguish between 
them (about 30% of all errors) 
The overlap problem can be solved at the signal level by 
means of acoustic source separation techniques or including 
additional features coming from video modality that are less 
sensitive to the overlap phenomena. Moreover, we will see 
that the mistakes of type II can be partially reduced by using 
features coming from acoustic source localization. 



4. AED system based on audio, video and 
localization features 

The overall operation of the proposed system is depicted in 
Fig.2. First, two information sources correspond to acoustic 
data processing: single channel audio provides spectro-
temporal features, while microphone array processing 
estimates the 3D location of the audio source. Second, data 
from multiple cameras covering the scenario allows extracting 
cues related to some AEs by means of several video-based 
technologies: person tracking, motion analysis, and object 
detection. The fusion of modalities is done at the feature level 
by concatenating features in one super-vector. The final 
segmentation of the audio waveform is based on a HMM 
classifier. 

 

Figure 2: System flowchart. 

4.1. Room model and localization features 

To enhance the recognition results of the baseline system 
additional features are proposed. In our case, as the 
characteristics of the room are known beforehand (Fig. 3 (a)), 
the position (x, y, z) of the acoustic source may carry useful 
information. In fact, events as door slam and door knock can 
only appear near the door, so a feature which describes the 
distance from the door is employed in this paper. On the other 
hand, usually each AE has an associated height, so the z 
position of the acoustic source may help to distinguish among 
AEs. The following categories are defined as indicated in Fig. 
3 (b): below table, on table, and above table. 
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Figure 3: (a) The top view of the room. (b) The three 
categories along the vertical axis. 

The acoustic localization system used in this work is based 
on the SRP-PHAT [10] localization method, which is known 
to perform robustly in most scenarios. In short, this algorithm 
consists of exploring the 3D space, searching for the 
maximum of the global contribution of the PHAT-frequency-
weighted cross-correlations from all the microphone pairs. 

4.2. Video features 

Tracking of multiple people present in the analysis area 
basically produces two figures associated with each target: 
position and velocity. The human velocity is readily 
associated to the footsteps AE. Multiple cameras are 
employed to perform tracking of several people interacting in 
the scene, by applying the real-time performance algorithm 
presented in [11].  

The motion visual analysis is also used to detect two other 
acoustic events: paper wrapping and door slam. A motion of a 
white object near a human in the scene can be associated to 
paper wrapping (under the assumption that a paper sheet is 
distinguishable from the background color). The movement of 
the door can be well detected by the camera oriented towards 
the door. In order to visually detect a door slam AE, we 
exploited the a-priori knowledge about the physical location of 
the door. Analyzing the zenital camera view, activity near the 
door can be addressed by means of a foreground/background 
pixel classification [12]. A high enough amount of foreground 
pixels in the door area will indicate that a person has entered 
or exited, hence allowing the visual detection of a door slam 
AE. 

Detection of certain objects in the scene can be beneficial 
to detect AEs such as phone ringing, cup clinking or keyboard 
typing. Unfortunately, phones and cups are too small to be 
efficiently detected in the scene but, the case of a laptop can 
be addressed. In our case, the detection of laptops is 
performed from a zenital camera located at the ceiling of the 
scenario. The algorithm initially detects the laptop’s screen 
and keyboard separately and, in a second stage, assesses their 
relative position and size [13]. Once the position of the laptop 
is detected, the amount of “skin” pixels over this position will 
allow to decide about a keyboard typing AE.  

4.3. Feature-level fusion approach 

Information fusion can be done at different levels: data, 
feature, and decision level. Data-level fusion is rarely found in 
multi-modal systems because raw data are usually not 
compatible among modalities. Concatenating feature vectors 
from different modalities into one super-vector is a possible 
way for combining audio and visual information. This 
approach has been reported in [14] for multimodal speaker 
recognition.  

In this work we use a HMM-GMM approach with feature-
level fusion, which is implemented by concatenating the 
feature sets Xs from S different modalities in one super-vector: 

  SXXXZ ∪∪∪= ...21 .  
Then, the likelihood of that observation super-vector at state j 
and time t is calculated as: 

∑ ∑=
m

mmtmZ ZNptb );;()( μ , 

where N(.;μ;Σ) is a multi-variate Gaussian pdf with mean 
vector μ and covariance matrix Σ, and pm are the mixture 
weights. Assuming uncorrelated feature streams, diagonal 
covariance matrices are considered. 
 
 



Table 2. Fusion results. 

5. Experiments and results 
In order to prove the adequateness of the proposed multimodal 
approach to AED, a series of experiments have been 
conducted and their results presented in Table 2.  

First, all sessions of isolated AEs were used to train the 
classifiers and the 3 scenes with spontaneously generated AEs 
were used for evaluation. The remaining 6 scenes were used 
for testing. In Table 2, the first column corresponds to baseline 
system with one-against-all topology. The next columns 
correspond to the results of feature level fusion with 
localization features, video features and combination of all 
modalities, respectively. As it can be observed, the video 
information improves the baseline results for those classes 
having a visual counterpart. This effect is justified by the fact 
that video information remains unaffected by acoustic noise. 
Therefore, the recognition rate of those classes considered as 
“difficult” (usually affected by overlap or of low energy) 
increases. 

Acoustic localization features improve recognition 
accuracy for some AEs, but for other events, it is decreased. 
One of the reasons of such behavior is the mismatch between 
training and testing data. For instance, the cup clink AE in 
seminar conditions often appears when the person is standing, 
which is not the case for isolated AEs. Another reason is that, 
for overlapped AEs, the AE with higher energy will be 
localized while the other overlapped AE will be masked. 

Finally, it has been observed that, for the paper work AE, 
the localization information reduces the accuracy rate, but 
when combined with video information, this rate increases. 
This effect is motivated by the complementarity of these two 
modalities. The opposite effect occurs with steps, where 
acoustic localization and video features together, decrease the 
overall performance. 

6. Conclusions 
In this work, by using data from interactive and rather 
spontaneous sessions, we have seen how video signals can be 
a useful additional source of information to cope with the 
problem of acoustic event detection. Acoustic localization 
features also tend to improve results for some particular 
classes. The combination of all these features for most of the 
classes produced higher recognition rates. 

A one-against-all AED system architecture has been 
proposed, proving its effectiveness in the feature-level fusion 
approach. Future work will be devoted to extend the 

multimodal AED system to other classes as well as the 
elaboration of new multimodal features. 
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Spontaneous AEs  AEs 
  Bas Bas+L Bas+V Bas+L+V
Applause 0.83 0.83 - - 
Cup clink 0.90 0.86 - - 
Chair moving 0.82 0.84 - - 
Cough 0.76 0.82 - - 
Door slam 0.74 0.82 0.85 0.87 
Key jingle 0.48 0.39 - - 
Knock 0.86 0.90 - - 
Keyboard 0.71 0.78 0.79 0.80 
Phone 0.87 0.90   
Paper work 0.65 0.62 0.73 0.79 
Steps 0.58 0.58 0.70 0.66 
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