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Abstract

Tracking of unrestricted human movement has received
great attention by the computer vision community basically
fostered by the number of applications that benefit from it.
Despite this research focus, there are few established mech-
anisms for evaluating and comparing the performance of
reported solutions. Existing metrics to quantify the perfor-
mance of a given video-based 3D pose estimation algorithm
assume that the committed errors follow a Gaussian distri-
bution and this might yield to misleading and biased fig-
ures under certain circumstances. In order to conduct a
fair evaluation of such algorithms, a set of new metrics are
introduced towards providing a more accurate and realistic
measure based on the study of the error distribution. Two
markerless and one marker-based methods for 3D human
motion capture are employed to analyze data contained in
the standard HumanEva-I human motion analysis dataset.
Ground truth information provided in this dataset allows
computing already existing metrics and comparing them
with the proposed ones proving their usefulness.

1. Introduction

Systematic evaluation of computer vision algorithms has
raised a growing interest in recent times. Periodic eval-
uation campaigns allow fair comparison of different tech-
niques, avoiding subjectivity through an agreed set of well-
defined metrics for assessment and a reference corpus of
pertinent data for testing. Along the same lines, notewor-
thy examples can be found in the field of face recognition
[1], person tracking [2], articulated body motion [14] or gait
recognition [13] among others.

In the field of articulated body motion, there is still no
general agreement on a principled evaluation procedure us-
ing a common set of objective and intuitive metrics for
measuring the performance of different articulated motion
tracking algorithms. Due to this lack of metrics, some re-
searchers present their tracking systems based on a qualita-

tive assessment [9]. On the other hand, a multitude of iso-
lated measures were defined in individual contributions to
validate their systems using various features and algorithms
[4, 11, 15]. Recently, a significant contribution by Sigal and
Black [14] released a large annotated dataset and proposed
two metrics that have been adopted in several evaluation
campaigns. Nevertheless, these metrics present some in-
conveniences and may produce biased scores under certain
conditions.

In this paper, we analyze the existing human pose es-
timation evaluation metrics and propose an alternative set
of measures that avoid the inaccuracies derived from the
assumption of a Gaussian distribution of the error. Three
state-of-the-art multi-camera systems are selected to be
evaluated using the HumanEva-I dataset to prove the useful-
ness of the proposed evaluation methodology. All systems
are based on the seminal annealed particle filtering (APF)
principle [9] that has been found to produce a robust track-
ing outputs. Two of the evaluated systems are markerless
and employ a 3D reconstruction of the scene together with
a human body model (HBM) [6] or a scalable human body
model (SHBM) [7]. The other system to be compared is
marker-based [5], employing a set of color markers to re-
trieve the position of the joints of the performer. Finally,
a comparison of all metrics is presented proving the ade-
quateness of the proposed ones towards a fair evaluation of
video-based 3D human pose algorithms.

2. Error measures

To quantitatively evaluate video-based human pose
tracking, two elements are required: ground truth infor-
mation and a set of metrics. The first have recently ben-
efited from marker-based motion capture systems [4, 14]
while sometimes hand-labeling labour has been also em-
ployed [11]. In order to define objective and informative
performance evaluation metrics, two design criteria should
be followed. First, they should allow to judge the tracker’s
precision in determining the exact location of the articulated
structure landmarks. Second, they should reflect its ability
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to consistently track the landmark locations through time,
i.e., to correctly trace their trajectories. Finally, useful met-
rics should have as few adjustable thresholds as possible
to help make evaluations straightforward and keep results
comparable.

A number of metrics have been employed independently
by several authors, most of them relying on the mean square
distance, in either 2D or 3D, between the estimated posi-
tions of several landmarks on the human body and ground
truth positions [11]. Other metrics rely on the angular root
mean square error measured at each joint angle [15]. Quan-
titative evaluation of human pose estimation algorithms was
addressed by Bălan et al. [4] presenting some performance
scores for those based on particle filtering. HumanEva
dataset [14] provided two generic metrics together with an
annotated set of sequences involving several types of mo-
tion. This dataset has been largely adopted by the computer
vision community as the reference tool for human pose per-
formance assessment.

2.1. Problem formulation

Given a HBM whose pose is represented by a state
vector y ∈ X ⊂ RD, we may represent any adopted
pose by a set of M virtual markers encoded as a vector
X = {p1,p2, ...,pM}, where pm ∈ R3. A mapping from
y to X can be always derived, either if the state vector en-
codes landmark positions (using a linear mapping) or joint
angles (applying forward kinematics). Let us define the
error between an estimated pose X̂ with reference to the
ground truth pose X as:

D(X, X̂) =
1
M

M∑
m=1

‖pm − p̂m‖ . (1)

This error figure is usually assumed to have a Gaussian dis-
tribution and the first and second statistical moments can
be derived. Hence, when a sequence of poses of length T is
analyzed, the performance of the tracking algorithm may be
assessed by averaging error along time and computing the
standard deviation:

µ =
1
T

T∑
t=1

D(Xt, X̂t), (2)

σ =

√√√√ 1
T

T∑
t=1

(
D(Xt, X̂t)− µ

)2

. (3)

These two metrics have been proposed in the HumanEva
framework by [14] to assess the performance of a generic
pose estimation algorithm. Good performance of a HBM
tracking algorithm will yield low values of both µ and σ,
whereas high values will denote a poor efficiency.

(a) (b) (c)

Figure 1. Point based metrics comparison example. In (a), the
reference image with the visual yellow markers. In (b), a good
body pose estimation produces µ = 48.91 and σ = 16.21, and
MMTP = 48.91 and MMTA = 1.0. In (c), a poor body pose esti-
mation produces µ = 51.22 and σ = 24.37, and MMTP = 46.35
and MMTA = 0.77 with δ = 50 (all distance units in mm). MMTA
and MMTP stand for the metrics presented in this paper.

These metrics produce meaningful results at a given time
instant when the sets X and X̂ fulfill the condition:

‖pm − p̂m‖ ≤ δ, ∀m, (4)

being δ a fixed threshold. Parameter δ discriminates
whether the position pm and the estimation p̂m can be con-
sidered as matched. This is the case of a pose configuration
X̂ similar to the one depicted in Fig.1(b) where the estima-
tion of the landmark positions are close to the ground truth
positions. When this condition is not fulfilled for some val-
ues of m, then the algorithm outputs estimate poses X̂ re-
sembling Fig.1(c). A limitation of the metrics proposed in
Eq.2 and 3 is that the non matched case is not distinguished
from a matched case. When the estimation of a certain land-
mark is clearly far away from the ground truth (that is when
‖pm − p̂m‖ > δ) the produced error is still accounted as a
gross estimation inaccuracy thus severely penalizing both µ
and σ scores. Hence, when a landmark subset is not tracked
properly (typically, the end of the limbs), the figures pro-
duced by these metrics are not informative enough to de-
scribe the tracker’s performance.

2.2. Statistics

In order to test the Gaussianity distribution assumption
stated in Eqs.2 and 3, the error vector E is generated,
E = {ek} = {‖pm,t − p̂m,t‖}, ∀m, t, including the esti-
mation error associated to every body marker along the
whole analysis sequence. When analyzing the histogram
of E for several human motion capture algorithms shown
in Fig.2, it can be seen that there is a dominant peak with a
Gaussian shape associated to error values fulfilling ek ≤ δ,
while the long tail spreading to large error values is derived
from those satisfying ek > δ. Indeed, when analyzing the
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(a) Markerless APF
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Figure 2. Histograms associated to the estimation error and the
quantile-quantile plot between the error vector E and a reference
normal distribution.

estimated pdf associated to E, it can be seen how it does
not properly fit to a Gaussian distribution (red line). In an
ideal case, as in Fig.2c, the estimated pdf matches a Gaus-
sian function while, in the other cases, the desired (green
line) and computed pdf differ substantially.

The quantile-quantile plot is an efficient way to assess
the Gaussianity of a distribution [10] in the sense that the
empirical quantiles of the data are plotted versus the quan-
tiles of a Gaussian. If the data belongs to a Gaussian distri-
bution, the points are spread roughly following a line. If the
data is skewed or has longer/shorter tails than a Gaussian,
instead of having a line, the scatter plot shows either flat or
vertical parts. As it can be seen in Fig.2, both markerless
algorithms error data do not properly align with the regres-
sion line while the marker-based one does, as expected from
the associated histograms.

3. Metrics

Assessing the efficiency of a human pose estimation and
tracking algorithm assuming a Gaussian distribution of the
involved errors E may lead to biased performance figures
(mean and variance). A set of metrics is proposed to cir-
cumvent this problem towards a fair evaluation procedure.

3.1. Point-based metrics

A new point based metric is proposed in order to bet-
ter express the performance of a human motion capture al-
gorithm. It takes into account that there might be situa-
tions were a subset of the landmarks in X̂ is not estimated
properly while the rest is done accurately. A similar prob-
lem is found in the field of multiple object tracking where
Bernardin et al. [3] proposed a set of metrics that were
validated and largely accepted as performance and compar-
ison scores in international evaluation campaigns [1]. The
underlying concept of this performance metrics may be ex-
tended to the field of pose estimation evaluation to produce
two intuitive and more informative metrics.

Let us define the set Ω as the set of pairs estimation-
ground truth locations whose distance is below the thresh-
old δ, Ω = {(pm ∈ X, p̂m ∈ X̂)|/‖pm − p̂m‖ ≤ δ}. The
two metrics can be defined:

1. The Multiple Marker Tracking Precision (MMTP),

MMTP =

∑T
t=1

∑
m∈Ωt

‖pt,m − p̂t,m‖∑T
t=1 |Ωt|

, (5)

where |Ω| denoted the cardinality of the set Ω. This
metric shows the total position error for the matched
estimation-ground truth pairs, averaged by the total
number of matches made along time. It reflects the
ability of the tracker to estimate precise landmark posi-
tions, independent of the performance of the algorithm
to correctly match all the landmarks in the HBM.

2. The Multiple Marker Tracking Accuracy (MMTA),

MMTA = 1−
∑T
t=1 |Ωt|
M · T

, (6)

whereM is the total number of landmarks in the HBM.
This score accounts for the ability of the of tracker at
producing matched estimation-ground truth pairs.

Finally, a supplementary metric might be defined: the
standard deviation of the MMTP score, σMMTP, as a mea-
sure of the quality of the estimation of the correctly matched
estimation-ground truth pairs.

In the example depicted in Fig.1, these two sets of met-
rics are compared. When the condition expressed in Eq.4
is fulfilled as in Fig.1b, metrics µ = 48.91 and σ = 16.21
properly evaluate the estimated pose. In Fig.1c, a typical
situation of landmark estimation swapping is found in the
ankles while the left hand track is lost. In this case, the
implicit assumption that these landmark estimation inac-
curacies follow a Gaussian distribution clearly biases the
scores, µ = 51.22 and σ = 24.37. MMTP and MMTA can
nicely handle both situations: in the first case MMTA = 1.0



(a) (b)

Figure 3. Quantitative performance of point based metrics. In (a),
landmark estimation precision scores µ and MMTP along time
and, in (b), the plot of the evolution of scores σ and MMTA.

indicates that the tracker has correctly produced a valid
estimation for all markers and the average precision is
MMTP = 48.91. In the second case, MMTA = 0.77 in-
dicates that the tracker could only track the 77% of the
landmarks during the analysis period of time and the av-
erage precision of the correctly tracked landmarks was
MMTP = 46.35 which is not biased by the non matched
pairs.

A quantitative comparison of the temporal evolution of
the presented point-based metrics is depicted in Fig.3. It is
shown that the score µ is more sensitive than MMTP since
it agglutinates both information from precision and lost
tracks. An instantaneous version of σ and MMTA computed
every frame is depicted to show the noticeable correlation
between both scores: when there are less matched pairs
estimation-ground truth, MMTA figure decreases while the
deviation of the error increases and vice versa. However,
the value of σ has little physical interpretation when some
landmarks are not tracked properly while MMTA presents
the amount of correctly tracked landmarks.

It must be noted that these results have been presented
for pm ∈ R3 but these metrics can be adapted to the case
where the landmark locations are measured directly on im-
ages, that is pm ∈ R2, or when we deal with 2D HBMs.

Parameter-free evaluation

Selecting an adequate value of δ is crucial to obtain mean-
ingful MMTP and MMTA scores. When selecting small
values of δ, the proposed metrics will be very restrictive
thus yielding to a low MMTA and high MMTP values. On
the other hand, large values of δ will report a tendency to
MMTA → 1 and MMTP → µ. Although δ may be set up
manually allowing a maximum allowed error, a parameter-
free evaluation procedure would be desirable.

The optimal value of δ, δopt, should be one that parti-
tions the histogram of E in such a way that values fulfill-
ing ek ≤ δopt tend to have a Gaussian distribution, as shown
in Fig.4a. Therefore, MMTP and σMMTP will stand for the
mean and variance of the green bins approximated by the
Gaussian function plotted in blue. In this way, MMTA will
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Figure 4. δ selection. In (a), parameter δopt partitions the error
histogram between the Gaussian and outlier parts.

account for the fraction of the error that can not be consid-
ered as belonging to this Gaussian distribution.

In order to select the adequate value of δopt, we formu-
lated the following optimization problem:

W (δ) = {ek ∈ E | ek ≤ δ} , (7)
δopt = min

δ
f (W (δ)) , (8)

where f(·) stands for a normality test function over the val-
ues of W (δ). Two options have been considered for f(·).
First, we employed the Kolmogorov-Smirnov statistic [8]
that measures the maximum difference between the empiri-
cal cumulative distribution function (CDF) of the input data
W (δ) and the theoretical CDF of a Gaussian. This statis-
tic measures a local feature of both CDF’s, which is the
worst discrepancy. In our optimization problem, we search
the value of δ that minimizes the maximum absolute differ-
ence between the empirical CDF up to δ and the theoretical
CDF of a Gaussian. Second, a linear regression [10] is ap-
plied over the quantiles of the input data with reference to
the quantiles of a Gaussian. Then, we compute the coeffi-
cient of determination R2 which is related to the explained
variance and measures a global feature, i.e. the dispersion
around the regression line. Values of R2 near 1 mean that
the data is aligned with the regression line, while low values
hint at a lack of linear dependence. When employing theR2

figure, Eq.8 minimum is replaced by a maximum.
Although the two scores measure different aspects of the

problem, we have found that they usually agree on the value
of δopt as depicted in Fig.4b.

3.2. Angle-based metrics

A natural choice in evaluating the performance of an ar-
ticulated motion capture system would be to produce a score
directly related to the defining parameters of the HBM, that
is angles. The advantage over point-based metrics lies in the
fact that measured angles are relative to the two vertices of
the articulation ending at the joint and, therefore, tracking
errors do not accumulate towards the end of the limbs, as
happens with the spatial position measured by point-based
metrics. Encoding the pose of a given HBM H by a set of
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Figure 5. Angular re-parameterization example for the elbow, (a),
and the knee (b) articulations executing the action walking. Once
the angles of the ground truth (black) and the estimation (blue) are
expressed with the same HBM parameters, the error (red) between
them can be computed and analyzed by the angular metrics.

N angles1, ΘH = {θ1, θ2, ..., θN}, θn ∈ R, is a common
approach in articulated motion tracking, since these magni-
tudes are directly related with the kinematic structure of the
human body [7, 6].

Defining metrics based on an angle representation of the
HBM presents some issues to be taken into account. For ex-
ample, every pose encoding based on angles assumes a pa-
rameterization of the human body that can not be the same
among algorithms enforcing different degrees of freedom
in every joint. Furthermore, joint angle representations are
not unique (quaternions, Euler angles, exponential maps,
etc.) thus making comparisons among algorithms difficult.
Some researchers have already proposed metrics measuring
the error in terms of degrees at every joint [15] but due to
the aforementioned issues, no angular metric has yet been
widely adopted by the community. The authors propose a
general method for evaluating the performance of an artic-
ulated motion capture system in terms of angles, regardless
of the parameterization employed during the analysis.

In order to define an angle based metric, a reference
HBM H̃ representation should be adopted. An obvious
choice would be to define a transformation between the
HBM H used by the tracking algorithm and H̃ but this
mapping cannot be always computed due to the differences
among HBM parameterizations. Instead, we propose the
following re-parameterization technique. First, a given pose
ΘH is transformed into a set of 3D coordinates, X , by ap-
plying forward kinematics [14]. This set X of 3D coordi-
nates is implicitly labeled because it is known which body
landmark is described by every 3D location. Finally, the
inverse kinematic problem has to be solved by extracting
the angles Θ eH of H̃ from the set X . We propose using
an enough detailed HBM as H̃; in our case, we chose the
one described in [12]. Moreover, this particular choice of
H̃ allows an algebraic expression relating X with all of its
joint angles. An example of this process is depicted in Fig.5

1The body root position and orientation are omitted for the sake of no-
tation simplicity.

where H 6= H̃ to prove the described re-parametrization
approach.

This process is applied to both the ground truth 3D po-
sitions X to obtain the ground truth angles Θ eH and to the
estimated pose Θ̂H to derive X̂ and, then, to obtain the es-
timated angles Θ̂ eH. The error between an estimated pose
Θ̂ eH to the ground truth pose Θ eH is defined as:

D(Θ eH, Θ̂ eH) =
1
M

N∑
n=1

|(θn − θ̂n)mod± π|. (9)

Two angular metrics are proposed: the angular mean es-
timation error, µθ, and its associated standard deviation, σθ.
However, computing these scores directly over all angles
over a period of length T would generate biased results due
to the already discussed Gaussianity assumptions. There-
fore, it is proposed to compute these metrics over the an-
gles associated to two vertices fulfilling the matching crite-
rion described in Eq.4 and averaged along all time instants,
mimicking Eq.5.

The proposed angular metrics complement the informa-
tion provided by the point based metrics and can not be pre-
sented alone. While the efficiency of the tracking system is
assessed by the score MMTA, both MMTP and σMMTP and
the pair µθ and σθ provide information about the precision
of the system in the spatial and angular domains respec-
tively.

4. Evaluation and Results
In order to assess the adequateness of the proposed met-

rics for human pose estimation algorithms, three multi-
camera algorithms [7, 6, 5] have been employed to process
the data contained in the HumanEva-I dataset. The obtained
tracking results have been evaluated using the standard met-
rics used by the human motion capture community (mean
and variance) and the proposed metrics in this paper (for
δ = 100 mm and δopt) as reported in Tab.1.

When comparing the obtained results using µ and σ met-
rics, it is not trivial to decide which system has a better
performance, for instance between the marker-based APF
and the markerless SHBM-APF. The marker-based one has
high µ and low σ scores while the markerless SHBM-APF
shows the opposite. This issue is straightforwardly solved
when comparing scores proposed in this paper. Although
both algorithms exhibit a similar behavior in the Gaussian
region of the error (reported by figures MMTP and σMMTP),
the MMTA score computed with δ = 100 mm indicates that
in the 95% of the cases the estimation is within the accep-
tance region, showing its superiority in comparison with the
76% of the markerless SHBM-APF algorithm. Values of µθ
and σθ are usually correlated with the behavior of MMTP
and σMMTP but provide a more natural way to express the
performance of a given algorithm.



δ = 100 mm δopt
Method µ σ MMTP σMMTP MMTA µθ σθ MMTP σMMTP MMTA µθ σθ δopt

Marker-based APF 59.88 17.35 45.85 13.70 95.32 7.09 4.21 41.37 11.63 92.18 6.82 3.91 82
Markerless APF 121.18 45.92 90.17 35.18 71.36 10.12 3.30 93.05 36.41 72.83 10.76 3.71 105
Markerless SHBM-APF 51.34 28.51 45.31 24.52 76.42 6.73 4.97 42.22 22.71 75.02 5.69 4.52 89

Table 1. Performance results comparison.

Although a beforehand agreed δ parameter should be
employed in an evaluation campaign to fix the maximum
allowed error in the estimation of a pose, its value should
be carefully selected not to produce biased values of MMTP
and σMMTP due to a wrong Gaussian distribution assumption
of set ek ≤ δ. In a more thorough evaluation process, the
value of δopt may give a useful clue to determine the range
of correct operation of an algorithm, understood as the error
range where limbs can be considered correctly tracked.

The presented results prove how the information con-
tained in µ and σ is not adequate to quantize the efficiency
of a human motion capture algorithm and it does not allow
a proper comparison among techniques. Instead, given a
fixed δ, the MMTA score should be the first figure to assess
the performance of a set of algorithms, followed by the val-
ues of MMTP and σMMTP (or µθ and σθ). Finally, δopt would
provide a supplementary criteria for ranking. In our case,
despite the diversity of employed techniques, we would first
rank the marker-based algorithm since it is the one yielding
to the highest value of MMTA. Then, we would compare the
MMTP values of both markerless systems ranking the mark-
erless SHBM-APF in second place and, finally, the marker-
less APF.

5. Conclusions

Defining a set of metrics to evaluate video-based human
motion capture algorithms is an important issue towards al-
lowing a fair comparison among techniques. It has been
proved that the usually employed scores based on the as-
sumption that the committed errors follow a Gaussian dis-
tribution may produce biased figures. The analysis of the
histogram of the errors reveals that these values follows a
Gaussian distribution up to a cutoff value δopt, and an un-
predictable distribtuion shape afterward. Two point-based
metrics are introduced to assess the performance of a given
human motion capture algorithm as the fraction of the es-
timated tracked landmarks (i.e. joints) that are wrongly es-
timated, MMTA, and the mean and variance of the estima-
tions that are in the Gaussian region of the error, MMTP and
σMMTP. Mean and variance are also computed for the angles
of correctly tracked vertices, namely µθ and σθ, through
a re-parameterization approach to harmonize measures ob-
tained when using different HBMs. As a future work, we
expect to disseminate the conclusions of this study to be in-
cluded in future evaluation campaigns.
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