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Abstract

The current paper presents a low-complexity approach
to the problem of simultaneous tracking of several people
in low resolution sequences from multiple calibrated cam-
eras. Redundancy among cameras is exploited to generate
a discrete 3D colored representation of the scene. The pro-
posed filtering technique estimates the centroid of a target
using only a sparse set of points placed on its surface and
making this set evolve along time based on the seminal par-
ticle filtering principle. In this case, the likelihood function
is based on local neighborhoods computations thus drasti-
cally decreasing the computational load of the algorithm.
In order to handle multiple interacting targets, a separate
filter is assigned to each subject in the scenario while a
blocking scheme is employed to model their interactions.
Tests over a standard annotated dataset yield quantitative
results showing the effectiveness of the proposed technique
in both accuracy and real-time performance.

1. Introduction
Robust and real-time multi-person tracking algorithms

are a key technology required by human-computer inter-
faces and interaction systems involving assistive or respon-
sive scenarios. This technology provides informative cues
such as location and context features commonly employed
in a wide range of applications, including gaming, smart en-
vironments, surveillance for security and health monitoring.
This paper addresses the problem of detecting and tracking
a group of people present in a multiple camera setup with a
reduced computational footprint.

A number of methods for camera based multi-person 3D
tracking has been proposed in the literature [4, 10, 11, 14].
A common goal in these systems is robustness under oc-
clusions created by multiple objects present in the scene
when estimating the position of a target. Single camera ap-
proaches [14] have been widely employed but are vulnera-
ble to occlusions, rotation and scale changes of the target. In
order to avoid these drawbacks, multi-camera tracking tech-
niques [4] exploit spatial redundancy among different views

and provide 3D information as well. Integration of features
extracted from multiple cameras has been proposed in terms
of image correspondences [5], multi-view histograms [11]
or voxel reconstructions [7].

Filtering techniques are employed to add temporal con-
sistency to tracks. Kalman filtering approaches have been
used to track a single object under Gaussian uncertainty
models and linear dynamics [14]. However, these meth-
ods do not perform accurately when facing noisy scenes or
rapidly maneuvering targets. Monte Carlo based techniques
such as particle filtering [2] (PF) have been proposed to
cope with these situations since they can deal with multi-
modal pdf s and are able to recover from lost tracks [10].

The proposed algorithm aims at decreasing the computa-
tion time by means of a novel tracking technique based on
the seminal particle filtering principle. In this case, parti-
cles no longer sample the state space but instead a magni-
tude whose expectancy produces the centroid of the tracked
person: the surface voxels. The validity of this claim is sup-
ported through Gauss’ and Green’s theorems applied to the
computation of the centroid of a volume exhibiting a radial
symmetry on the xy plane. The likelihood evaluation re-
lying on occupancy and color information is computed on
local neighborhoods thus dramatically decreasing the com-
putation load of the overall algorithm. Multiple targets are
tracked assigning a tracking filter to every one governed by
a track management module that classifies whether a blob
exhibits an anthropomorphic shape. In order to achieve the
most independent set of trackers, we consider a 3D blocking
method to model interactions.

Finally, effectiveness of the proposed algorithms is as-
sessed by means of objective performance measures de-
fined in the framework the CLEAR [1] multi-target track-
ing database. Real-time performance of this algorithm is
assessed by presenting the real-time-factor vs. precision
and accuracy graphics showing the trade-off between speed
and performance. A real-time GPU implementation of this
systems shows its adequateness for human-computer inter-
faces.
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Figure 1. Input data generation example. In (a), a sample of the original images. In (b), foreground segmentation of the input images
employed by the SfS algorithm. In (c), example of the binary 3D voxel reconstruction and, in (d), the final colored version shown over a
background image.

2. System overview

For a given frame in the video sequence, a set of N
images are obtained from the N cameras (see a sample in
Fig.1(a)). Each camera is modeled using a pinhole camera
model based on perspective projection with camera calibra-
tion information available. Foreground regions from input
images are obtained using a segmentation algorithm based
on Stauffer-Grimson’s background learning and subtraction
technique [15] as shown in Fig.1(b).

Redundancy among cameras is exploited by means of
a Shape-from-Silhouette (SfS) technique [7]. This process
generates a discrete binary occupancy representation of the
3D space (voxels) denoted as V and shown in Fig.1(c). A
voxel is labeled as foreground or background by checking
the spatial consistency of its projection on theN segmented
silhouettes. The visibility of a surface voxel onto a given
camera is assessed by computing the discrete ray originat-
ing from its optical center to the center of this voxel using
Bresenham’s algorithm and testing whether this ray inter-
sects with any other foreground voxel. The most saturated
color among pixels of the set of cameras that see a surface
voxels is assigned to it. An example of this process is de-
picted in Fig.1(d). Let us denote the set of surface voxels as
S and the set of colored surface voxels as SC. Since the fil-
tering algorithm that will process these data is robust to in-
accuracies and spurious voxels, the criteria employed to se-
lect the techniques that go from raw images to the 3D voxel
reconstruction are low computational load and the ability of
the involved algorithms to be parallelized towards a real-
time system performance.

The resulting colored 3D scene reconstruction is fed to a
track management module that will create and delete filter
instances according to the number of targets in the scene.
This module involves a simple naı̈ve Bayes classifier that
decides whether a blob in the scene can be considered as a
person according to its height, bounding box sizes and over-
all volume. Information about the environment (dimensions
of the room, furniture, etc.) allow discarding tracks that are
clearly wrong.

3. 3D position estimation from a random set
Assuming an homogeneous 3D discrete object, its geo-

metric moments can be exactly computed using surface in-
formation solely through the discrete Gauss theorem [16]
that relates the sum of a function over a discrete, closed
surface to a sum of a function over the enclosed discrete re-
gion. Other approaches compute these moments exploiting
the discrete structure of the representation and performing a
layered decomposition and analysis of the object by means
of the Green’s theorem [8, 13]. In the current scenario, it
might be assumed that objects in the scene present a rough
radial symmetry in the xy plane, thus simplifying the appli-
cation the abovementioned divergence theorems and posing
the computation of the centroid xt as the average of the po-
sitions of the surface voxels:

xt =

∑
V∈Vt

Vx

|Vt|
=

∑
V∈St

Vx

|St|
, (1)

where | · | stands for the cardinality of the enclosed set and
Vx is the position x = (x, y, z) of voxel V .

However, let us consider the case where only a uniform
random spatially selected subset of either V , V̂t , or St, Ŝt,
is employed in the computation of the centroid,

xt ≈ x̃t =

∑
V∈bVt

Vx

|V̂t|
, xt ≈ x̃S

t =

∑
V∈bSt

Vx

|Ŝt|
. (2)

In this case, the committed estimation error will be inversely
proportional to the cardinality of the employed set as shown
in Fig.2, proving that it is still possible the achieve a satis-
factory estimation precision using either V̂t or Ŝt.

Let us pose the problem of estimating the centroid of a
single object in the scene by analyzing a randomly selected
set of voxels from the whole scene, denoted as W . An
approach to the computation of the centroid might be:

x̃t ≈

∑
W∈Wt

ρ(W)Wx∑
W∈Wt

ρ(W)
, ρ(W) =

{
1 ifW ∈ Vt

0 ifW /∈ Vt
, (3)



Figure 2. Estimation centroid error when employing a fraction of
the surface or interior voxel sets.

where ρ(W) gives the mass density of voxel W . Without
a loss of generally, it is assumed that all voxels have the
same mass, then ρ(·) is a binary function that checks the
occupancy of a given voxel. Therefore, only the fraction of
W that fulfills W ∈ Vt contributes to the computation of
x̃t. Eq.3 can be rewritten as:

x̃t ≈
∑
W∈Wt

ρ(W)∑
W∈Wt

ρ(W)
Wx =

∑
W∈Wt

ρ̃(W)Wx, (4)

where ρ̃(W) ∈ [0, 1] is the normalized mass contribution of
voxelW in the computation of x̃t. In other words, computa-
tion of x̃t can be understood as a weighted sum of positions,
Wx, where weights ρ̃(W) assess the likelihood ofW ∈ Vt.
Analogously, this formulation can be extended to employ
surface voxels as:

x̃S
t ≈

∑
W∈Wt

ρS(W)∑
W∈Wt

ρS(W)
Wx =

∑
W∈Wt

ρ̃S(W)Wx, (5)

where ρS (W) ∈ [0, 1] weights the contribution of voxelW
into the computation of x̃S

t by measuring the likelihood of
W ∈ St.

Within this context, functions ρ(·) and ρS(·) might be un-
derstood as likelihood functions and Eq.4 and 5 as a sam-
ple based representation of an estimation problem. There
is an obvious similarity between this representation and
the formulation of PFs but there is a significant difference:
while particles in PF represent an instance of the whole state
space, our samples (W ∈Wt) are points in the 3D space.

The presented concepts are applied to define the Surface
Sampling (SS) algorithm. Let yi

t ∈ R3, a point in the 3D
space and ωi

t ∈ R its associated weight measuring the like-
lihood of this position being part of the object or part of
its surface1. Assuming that these points will be uniformly
distributed and the object will exhibit aforementioned sym-
metry property, the centroid can be computed as:

x̃t ≈
Ns∑
i=1

ωi
ty

i
t, (6)

1The usage of surface information instead of interior information is
discussed in the next section.

where Ns is the number of sampling points. When us-
ing SS we are no longer sampling the state space since yi

t

can not be considered an instance of the centroid of the
target as happened with particles in PF. Hence, we will
talk about samples instead of particles and we will refer
to {(yi

t, ω
i
t)}

Ns
i=1 as the sampling set. This set will approx-

imate the surface of the k-th target, Sk, and will fulfill the
sparsity condition Ns � |Sk|.

The main advantage of the SS algorithm is its computa-
tional efficiency. While particle likelihoods are computed
over all data while sample likelihoods will be computed
over a local domain, thus drastically reducing the overall
number of operations required.

In order to define a method to recursively estimate x̃t

from the sampling set {(yi
t, ω

i
t)}

Ns
i=1, a filtering strategy has

to be set. Essentially, the proposal is to follow the PF anal-
ysis loop (re-sampling, propagation, evaluation and estima-
tion) with some opportune modifications to ensure the con-
vergence of the algorithm.

4. Filter implementation
Two crucial factors are to be considered when imple-

menting the SS algorithm: the sample likelihood evaluation
and the sample re-sampling and propagation.

4.1. Sample likelihood evaluation

Associated weight ωi
t to a sample yi

t will measure the
likelihood of that 3D position to be part of the surface
of the tracked target. Two partial likelihood functions,
pSurface(Vt| yi

t) and pColor(SC
t | yi

t), are linearly combined
to form p(zt| yi

t), zt = {Vt,SC
t }, as:

p(zt| yi
t) = λ pSurface(Vt| yi

t) + (1− λ) pColor(SC
t | yi

t).
(7)

Partial likelihoods will be computed on a local domain cen-
tered in the position yi

t. Let C(yi
t, q, r) be a neighborhood

of radius r over a connectivity q domain on the 3D orthogo-
nal grid around a sample place in a voxel position yi

t. Then,
we define the occupancy and color neighborhoods around
yi

t as Oi
t = Vt ∩ C(yi

t, q, r) and Ci
t = SC

t ∩ C(yi
t, q, r),

respectively.
For a given sample i occupying a voxel, its weight asso-

ciated to the raw data will measure its likelihood to belong
to the surface of an object. It can be modeled as:

pRaw(Vt| yi
t) = 1−

∣∣∣∣ 2|Oi
t|

|C(yi
t, q, r)|

− 1
∣∣∣∣ . (8)

Ideally, when the sample yi
t is placed in a surface, half of its

associated occupancy neighborhood will be occupied and
the other half empty. The proposed expression attains its
maximum when this condition is fulfilled. Although this
likelihood can be computed using the surface voxel data,



St, this set tends to be noisy hence not suitable for this com-
putation.

Function pColor(SC
t | yi

t) can be defined as the likelihood
of a sample belonging to the surface corresponding to the
k-th target characterized by an adaptive reference color his-
togram Hk

t :

pColor(SC
t | yi

t) = D(Hk
t ,C

j
t ). (9)

Since Cj
t contains only local color information with refer-

ence of the global histogram Hk
t , the distance D(·) is con-

structed towards giving a measure of the likelihood between
this local colored region and Hk

t . For every voxel in Cj
t , it

is decided whether it is similar to Hm
t by selecting the his-

togram value for the tested color and checking whether it
is above a threshold γ. Finally, the ratio between the num-
ber of similar color and total voxels in the neighborhood
gives the color similarity score. Since reference histogram
is updated and changes over time, a variable threshold γ is
computed so that the 80% of the values of Hm

t are taken
into account.

The parameters defining the neighborhood were set to
q = 26 and r = 2 yielding to satisfactory results. Larger
values of the radius r did not significantly improve the over-
all algorithm performance but increased its computational
complexity.

Sample propagation and discrete re-sampling

A sample yi
t placed near a surface will have an associ-

ated weight ωj
t with a high value. It is a valid assumption to

consider that some surrounding positions might also be part
of this surface. Hence, placing a number of new samples in
the vicinity of yj

t might contribute to progressively explore
the surface of S.

Given the discrete nature of the 3D voxel space, it will
be assumed that every sample is constrained to occupy a
single voxel or discrete 3D coordinate and there can not
be two samples placed in the same location. Re-sampling
method is mimicked from particle filtering so a number of
replicas proportional to the normalized weight of the sample
are generated. Then, these new samples are propagated and
some discrete noise is added to their position meaning that
their new positions are also constrained to occupy a discrete
3D coordinate (see an example in Fig.3(a)). However, two
re-sampled and propagated particles may fall in the same
3D voxel location as shown in Fig.3(b). In such case, one
of these particles will randomly explore the adjacent voxels
until reaching an empty location; if there is not any suitable
location for this particle, it will be dismissed.

The choice of sampling the surface voxels of the object
instead of its interior voxels to finally obtain its centroid
is motivated by the fact that propagating samples along the
surface rapidly spread them all around the object as depicted
in Fig.4. Propagating samples on the surface is equivalent to

(a) (b)

Figure 3. Example of discrete re-sampling and propagation (in
2D). In (a), a sample is re-sampled and its replicas are randomly
placed occupying a single voxel. In (b), two re-sampled sam-
ples falls in the same position (red cell) and one of them (blue)
performs a random search through the adjacent voxels to find an
empty location.

propagate them on a 2D domain, hence the condition of not
placing two samples in the same voxel will make them to
rapidly explore the surface of the target (see Fig.4(c)). On
the other hand, interior voxels propagate on a 3D domain
thus having more space to explore and therefore becoming
slower to spread (see Fig.4(b)).

Interaction model

The proposed solution for multi-person tracking is to use
a split tracker per person together with an interaction model.
Let us assume that there are M independent trackers. Nev-
ertheless, they are not fully independent since each tracker
can consider voxels from other targets in both the likeli-
hood evaluation or the 3D re-sampling step resulting in tar-
get merging or identity mismatches. In order to achieve the
most independent set of trackers, we consider a blocking
method to model interactions. Many blocking proposals can
be found in 2D tracking related works [10] and we extend
it to our 3D case. Blocking methods penalize samples that
overlap zones with other targets. Hence, blocking infor-
mation can be also considered when computing the particle
weights as:

ωi
t = p(zt|yi

t)
M∏

k=1
k 6=m

β
(
x̃m

t−1, x̃
M
t−1

)
, (10)

where M is the total number of trackers. Term β(·) is
the blocking function defining exclusion zones that penal-
ize particles that fall into them. For our particular case,
considering that people in the room are always sitting or
standing up (this is a meeting room so we assume that they
never lay down), a way to define an exclusion region mod-
eling the human body is by using an ellipsoid with fixed x
and y axis. Axis in z is a function of the estimated centroid
height. Tracked objects that come very close can be suc-
cessfully tracked even though their volumes have partially
merged.



(a) Reference image (b) Interior based likelihood (c) Surface based likelihood

Figure 4. Sample positions evolution when using a likelihood based on the interior (a) and surface (b) voxels.

5. Experiments and Results

In order to assess the performance of the proposed track-
ing systems, they have been tested on the set of benchmark-
ing image sequences provided by the CLEAR Evaluation
Campaign 2007 [1]. Typically, these evaluation sequences
involved up to 5 people moving around in a meeting room
adding up to 5 hours of annotated data. Each sequence
was recorded with 4 cameras placed in the corners of a
SmartRoom and a zenithal camera placed in the ceiling.
All cameras were calibrated and had resolutions ranging
from 640x480 to 756x576 pixels at an average frame rate
of fR = 25 fps. The test environments was a 5x4 m room
with occluding elements such as tables and chairs.

Performance measures proposed in [3] for multi-person
tracking evaluation have been adopted. These scores, being
used in international evaluation contests [1] and adopted by
several research projects such as the European CHIL or the
U.S. VACE allow objective and fair comparisons. The two
employed performance measures are: the Multiple Object
Tracking Precision (MOTP), which shows tracker’s abil-
ity to estimate precise object positions, and the Multiple
Object Tracking Accuracy (MOTA), which expresses its
performance at estimating the number of objects, and at
keeping consistent trajectories. MOTP scores the average
metric error when estimating multiple target 3D centroids,
while MOTA evaluates the percentage of frames where tar-
gets have been missed, wrongly detected or mismatched.
Low MOTP and high MOTA scores are preferred indicating
low metric error when estimating multiple target 3D posi-
tions and high tracking performance.

In order to provide a comparison with the widely em-
ployed PF approaches to this tracking problem, a standard
PF filtering scheme operating over the same input data pro-
vided to the SS system is considered. For this PF system,
every particle encodes an instance of the target’s centroid.
An ellipsoid model describing the human shape is employed

to compute the likelihood between a particle and the input
data V as the intersection between them. Propagation of
particles is driven by a Gaussian drift applied over the state
variables of the particle.

Results for the proposed algorithm are depicted in Tab.1
and compared with some other methods that employed the
same dataset. However, all these algorithms only reported
these performance measures but omitted a quantitative eval-
uation of its computational requirements. Comparing ob-
tained scores among different algorithms can give an idea
about their performance in a scenario where computational
complexity is not taken into account. However, if an algo-
rithm requires a high computational load to attain a good
performance, this might render it unsuitable for some appli-
cations such as instant responsive environments or human-
computer interfaces.

Let us define the RTF factor of an algorithm as:

RTF =
FPS
fR

, (11)

where FPS is the frames-per-second measure of the eval-
uated algorithm. High values of RTF are desirable and
RTF = 1 is the barrier from real-time to non real-time.

The RTF factor associated with a performance measure
MOTP/MOTA (in both vertical axes) of the SS and PF algo-

Method MOTP MOTA
(mm) (%)

Face detection+Kalman filtering [9] 91 59.66
Appearance models+Particle filtering [12] 141 59.62
Upper body detection+Particle filtering [4] 155 69.58
Zenithal camera analysis+Particle filtering [4] 222 54.94
Voxel analysis+Heuristic tracker [6] 168 30.49
Voxel analysis+Particle filtering (100 particles) 147 74.56
Voxel analysis+Surface sampling (800 samples) 144 81.50

Table 1. Results reported using the CLEAR dataset [1].



Figure 5. Examples of real-time tracking using the presented SS algorithm in a real scenario using CUDA. The robustness of the algorithm
is proved in the cases where two subjects come close to each other or when the data is corrupted or present large missings.

rithms when dealing with raw and colored input voxels is
presented in Fig.6. Each point of every curve is the result of
an experiment conducted over all the CLEAR dataset asso-
ciated to a number of samples/particles of each algorithm.

Due to the computational complexity of each algorithm,
when comparing SS and PF algorithms under the same op-
eration conditions, the RTF associated with SS is always
higher than the associated with PF. Similarly, the computa-
tional load is higher when analyzing colored than raw in-
puts. All the plotted curves attain lower RTF performance
values as the size of the voxel sV decreases since the amount
of data to process increases (note the different RTF scale
ranges for each voxel size). Regarding the MOTP/MOTA
measures, there is a common tendency to a decrease in the
MOTP and an increase in the MOTA as the RTF decreases.
The separation between the SS and PF curves is bigger as
the voxel size decreases since the PF algorithm has to evalu-
ate a larger amount of data. The observation of these results
yield to the conclusion that the SS algorithm is able to pro-
duce similar and, in some cases, better results than the PF
algorithm with a lower computational cost.

The implementation of these algorithms using 3 PCs
equipped with a GPU allowed a real-time implementation
of the presented system using CUDA. A voxel size of
sV = 2 cm was employed thus producing results usable
for realistic human-computer interfaces as shown in Fig.5.

6. Conclusions

This paper presented a multi-person tracking system in
a multiple camera view environment intended for real-time
operation. Redundant information among cameras is ex-
ploited to produce a 3D colored voxel set that is fed to
the proposed tracker. A PF based strategy proved efficient
for this task but requiring a high computational load. In
order to alleviate the high computational load usually re-
quired by the widely employed PF filtering strategies, sur-
face sampling technique has been presented as an alterna-
tive producing similar results but demanding up to a tenth
of the processing time. Color information together with a

blocking scheme has been employed to model interactions
among targets thus adding robustness against mismatches
and cross-overs among targets. Results obtained over a
large test database proved the effectiveness of our technique
and its implementation using CUDA allowed real-time pro-
cessing hence rendering this algorithm suitable for human-
computer interfaces.
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Figure 6. Computational performance comparison among Surface Sampling (SS) and Particle Filtering (PF) using several voxel sizes
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the computational load required by each algorithm to attain a given tracking performance.
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