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ABSTRACT

We propose a view-invariant representation of human appearance
in multi-view scenarios consisting in a new set of views that over-
come the view-dependency and moderate occlusion problems of
fixed cameras. First, a 3D reconstruction of the scene is generated,
from which we can track multiple persons in the scenario. For each
tracked subject, we define a set of virtual views by projecting its as-
sociated 3D volume. The synthetic views can be generated in con-
venient directions to detect and classify a number of gestures useful
in assistive and smart environments. Experimental results of the
representation and event detection in a multi-camera environment
prove the effectiveness of the proposed method.

1. INTRODUCTION

Simultaneous analysis and recognition of motion performed by
multiple individuals is a desirable goal when designing human-
computer interaction scenarios, assistive environments or biometric
systems. However, the mutual occlusion among the several subjects
in the scene and the variability of their appearance depending on
their relative position with respect to the camera, render this prob-
lem difficult to be addressed from a monocular point of view. In
this case, multi-camera approaches have been found more suitable
to cope with occlusions and perspective issues. Two approaches
are found in the literature to combine information from multiple
views: decision and data fusion. The first aims at combining the
motion analysis performed separately on every camera view, while
the second builds up a data representation aggregating the informa-
tion from all cameras and then analyzing the motion in this synthetic
space.

On the one hand, multi-view motion analysis using decision
fusion has been adressed in [1] where a set of motion descriptors,
namely the Motion History Image (MHI) and the Motion Energy
Image (MEI), are computed for every view. Then, these descriptors
are combined in order to decide the most likely action. This type
of per-camera analysis is particularly suitable since most of image
processing can be applied at every image view. However, the main
drawback is to place the cameras in the correct orientation with re-
spect to the analyzed subject in order to provide the set most infor-
mative perspectives. On the other hand, data fusion approaches rely
on a synthetic 3D reconstruction of the scene, usually by means
of voxel [4] or mesh representations [6], and a subsequent analy-
sis of these data. Although these representations exploit the spatial
redundancy among camera views to be robust against occlusions,
the number of motion analysis techniques are lesser and are usually
based on an extension the MHI and MEI descriptors [2].

This paper presents a novel view-invariant representation and
analysis of human appearance that combines the ability of data fu-
sion by means of 3D voxel representations to deal with occlusions
and provide convienient perspectives, and the robustness of avail-
able 2D motion descriptors. This representation is based on the
use of tracking information to define virtual cameras with specific
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view-invariancy properties. Reprojection of 3D data onto these vir-
tual cameras yields a human appearance representation suitable for
human motion analysis. Experimental results in a multi-camera sce-
nario show the feasibility of the proposed technique for represent-
ing separately several humans in the scene and the potential of the
proposed method for recognizing their actions using well-known
view-specific motion descriptors.

2. VIEW-INVARIANT HUMAN APPEARANCE
REPRESENTATION

We target a time-varying projective transformation that, given some
3D synthetic data, yields a view-invariant representation of humans
based on a set of virtual views. Deriving the view-invariancy con-
ditions for such a problem requires the choice of a model. We focus
on a time-varying virtual camera model whose parameters depend
on the individuals’ position and orientation in a given scenario. The
resulting representation has, in general, a lower dimension than the
3D data from which it is obtained, and establishes a connection be-
tween 3D reconstructions and classical holistic approaches for mo-
tion analysis and behavior understanding.

In the following, we present a methodology for defining a view-
invariant human appearance representation based on virtual views.
We first present a method for obtaining a 3D reconstruction of the
scene. Then, we derive the view-invariancy conditions that a the
virtual camera must hold. We particularize these conditions for a
set of informative virtual views to finally link the problem of esti-
mating the virtual camera parameters with a multi-person tracking
and orientation estimation problem.

2.1 3D Data Generation

As abovementioned, the proposed view-invariant representation re-
quires a 3D reconstruction of the scene. We obtain such a recon-
struction by means of Shape-from-Silhouette (SfS) [4].

The first step consists in extracting the foreground pixels in the
available views. To this end, we employ an algorithm based on
the Running Gaussian Average in combination with a shadow sup-
presion method that analyzes the chromaticity changes [8]. With
the resulting foreground maps we apply SfS, which is based on a
multi-camera consistency test that determines whether samples in
the 3-dimensional space within the scene are occupied or not. The
3D space is sampled into elementary volumetric units called voxels
that represent small cubes of a given size (typically a few cm). For
each voxel, an occupancy test is performed. This basically implies
that a selected number of points belonging to the voxel are projected
onto the multiple foreground maps to evaluate the probability of that
voxel to be occupied (see Fig. 1).

2.2 Virtual Cameras

Let us define the time-varying virtual camera in terms of its extrin-
sic and intrinsic parameters according to a pinhole camera model
[5], that is, rotation Ry ,, translation t, ,, and intrinsics matrix K, ,,
where subindices ¢ and v denote the temporal instant and the v-th
view of a set of V virtual views, respectively. Similarly, let us as-

sume that the position and orientation vector (both in R3) of the i-th



Figure 1: Example of visual hull obtained by means of Shape-from-
Silhouette. Surface voxels have been colored and the scenario has
been schematically represented for a better depiction.

individual, namely r! and h!, are given at any time instant . Then,
the problem of defining a virtual camera with rotation, translation
and scale invariancy properties with respect a single individual can
be stated as finding Riv, ti, and K! , with the following property:

e [ et p; be a point in homogeneous coordinates defined as:

)
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where &, B and ¥ are real coefficients and n! is normal to h!.
Given the projection mapping P(x,y,z) := (x/2,y/z), Ryt
and K;‘N verify that (following the matrix notation in [5]):

P, (Rt p) =a0sy,  vhaBy @

or equivalently, p; has a constant projection a, g ,, on the virtual
camera plane for any 7.

Similarly, one can target scale invariancy with respect to some
scale measure for all the individuals. The following states a suffi-
cient condition for scale invariancy:

e Let pl;,p2, be homogeneous points defined as in (1). Given
the metric distance m; = ||p1; — p2!|| that describes the scale
measure for each individual, R} ,,.t; , and K} , verify that:
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The formulated condition is sufficient but not necessary, as scale
invariancy can be imposed after projecting data on the virtual
camera planes by cropping the resulting projections to a given
scale measure in some dimension of the image.

From the above formulations, it becomes evident that the charac-
terization of individuals in terms of position, orientation and scale
will condition the “degree” of view-invariancy of the human appear-
ance representation. We can define these parameters conveniently to
obtain virtual cameras yielding representations of humans that not
only verify the above conditions, but give a purposedly meaningful
representation of human appearance in multi-camera scenarios. In
the following, we describe the basis of how to define a particular
set of virtual cameras yielding a view-invariant representation of an
individual that moves freely across a scenario.

2.2.1 Individual axis-aligned virtual cameras

We want to define the view-invariant virtual cameras aligned with
a coordinate system referred to an individual in the scene. A pri-
ori, three virtual cameras whose image planes are orthogonal would
define a minimum set of views providing a meaningful motion de-
scription for many human actions. Coronal, sagittal and transverse
planes of a standing human are a particular case of an orthogo-
nal plane set that is likely to capture the most relevant motion in-
formation even in cases with self-occlusions. This supposition is
supported by empirical results reported in [7] in the field of action
recognition, where fronto-parallel views are the most informative
planes to infer on human pose. Hence, we state the following defini-
tions and assumptions in order to find virtual cameras whose image
planes are parallel to the mentioned planes:
e The world coordinate system has its axes aligned with the sce-
nario and the Z axis represents the height.
e The individual’s position, rf, has a fixed Z coordinate.
e The individual’s orientation, hf, is given in the XY plane by
means of a vector in R3.
o The intrinsic parameters are arbitrarily set for all the individuals
(Kf’v = K,) assuming that the virtual camera is an ideal camera
(it has no distortion and the principal point lies on the image
center). Eventually, we could consider a high value for the focal
length and the camera translation that will assure almost scale
invariancy with respect the height of the individuals.
Considering the above conditions, let us define the i-th indi-
vidual coordinate system as the coordinate system whose X axis is
given by the normalized human orientation vector, that is xz = ﬁ
(note that, for the sake of clarity, the dependence with time has
been removed). As a consequence of the second condition imposed
above, the Z axis of such a coordinate system will be aligned with
the Z axis of the scenario, thus yielding the individual coordinate
system completely defined. For the case of a standing human and
sagittal, coronal and transverse planes, the axes of the presented co-
ordinate system define the rotation matrices of the virtual cameras:
e Virtual View in the coronal plane

' (—2z X x]Z)T
Ri’or = (_ZZ)T (4)
()
e Virtual View in the sagittal plane
| ()"
Ri‘ag = (7Z2) (5)
(xi x zi)T
e Virtual View in the transverse plane
[
R;rans = (7X;,) (6)
(z},)"

The above matrices are for one-sided rotations. Opposite views
are defined applying a rotation of 7 radians around the y. axis of
the camera coordinate system.

The extrinsic parameters are completely defined with the trans-
lation vector, that depends on the rotation definition and an arbitrary
distance d between the individual’s position r! and the virtual cam-
era center of projection. Let z, be the vector in the third row of the
virtual camera rotation matrix, i.e., the Z axis on the virtual camera
coordinate system . The translation can be found as:

ti = —Ri(r' —dz,) )

An example of virtual camera planes obtained by the above
equations is depicted in Fig. 2.
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Figure 2: Representation of virtual camera planes parallel to coro-
nal, sagittal and transverse planes according to the defined indi-
vidual coordinate system xj, y;, Z5. A 3D model of a human is
projected onto each camera plane. x, y and z represent the world
coordinate system.

2.3 Multi-person tracking and orientation estimation

The problem of estimating the time-varying virtual camera param-
eters is shown to be equivalent to estimating the position and orien-
tation of every human in the target scenario. We propose a two-step
method comprising a multi-person tracking stage and a principal
component analysis based orientation estimation.

The multi-person tracking stage relies on 3D Sparse Bayesian
Sampling or simply Sparse Sampling (SS)[3]. This method is an
efficient alternative to Particle Filters (PF) in position estimation
problems where the cost functions that are used to approximate like-
lihoods depend on voxelized data. SS is based on propagation, eval-
uation and re-sampling, thus fullfilling a sequential Monte-Carlo
scheme. However, each one of these steps presents particular char-
acteristics in order to enhance robustness and efficiency.

While a typical cost function used in PF requires evaluating
thousands of voxels for each particle, 3D SS reduces the computa-
tional load of this step by evaluating local neighborhoods of each
sample. The sample set must hold some sparsity conditions in order
to verify that the mean of all the available samples approximates
the centroid of the target (Fig. 3). Hence, 3D propagation and
re-sampling are defined accordingly to guarantee an accurate ap-
proximation. Moreover, the choice of the local neighborhood cost
function can also condition the sparsity of the sample set.

To tackle the multi-person tracking problem efficiently, we use
independent Sparse Samplers for each tracker with a simple yet ef-
fective blocking method that models interactions. In addition, a
higher semantic analysis of the scene, tracks and 3D blobs is per-
formed at every frame to remove spurious objects or to create new
tracks [3].

For the target scenarios considered, we assume that individuals
keep their torso in vertical position most of the time. In the light of
this assumption, orientation estimation is performed combining an
analysis of the individual motion and the shape of the torso on the
XY plane. When moving in certain directions, we assume that the
orientation is given by the direction of the estimated motion. When
the velocity goes below a given threshold, the orientation estimation
relies on the approximate shape of the torso on the XY plane. Such
a shape is represented by the summation of the volumetric recon-
struction along the Z axis on a neighborhood of the individual’s es-

Figure 3: Example of labeled volumes using the Sparse Sampling
multi-person tracker. The dots distributed across the projections of
each volume represent the sparse samples. Propagation, evaluation
and re-sampling have been designed to place these samples on the
surface of each volume.

timated position, r!. By performing this summation for z >= 80 cm
we better approximate the torso shape. Then, we find the principal
component with minimum associated eigenvalue. This component
is an approximation of the orientation of the torso, that is, a noisy
observation of the vector h! with an undetermination of 7 radians.
Finally, we model the true orientation as a linear stochastic process
with additive white Gaussian noise. We consider a Gauss-Markov
model where the observations of the true orientation are the values
computed with the abovementioned procedure to apply a Kalman
Filter.

Note that, as the orientation may be given as the principal axis
with minimum associated eigenvalue in a representation of the torso
in the XY plane, the resulting virtual camera planes may not be
strictly parallel to coronal, sagittal and transverse planes for some
motions.

2.4 View-Invariant Silhouettes

The proposed representation requires projecting relevant 3D syn-
thetic data on convenient virtual views. Provided that we use a sim-
ple SfS approach, we project the i-th individual volumetric recon-
struction as a binary mask (see Fig. 4). The associated volume is
obtained by analyzing the connectivity of voxels in a neighborhood
of the estimated position r:.

3. APPLICATION TO MOTION REPRESENTATION AND
ACTION RECOGNITION

Human silhouettes have been widely used to represent human pose
and motion in applications aiming at analysis of human motion or
action recognition. The presented framework allows us to repre-
sent humans as silhouettes in convenient views yielding a chance
to deal with multi-camera scenarios where individuals move freely,
thus changing their orientation and their captured appearance in the
available views.

One of the advantages of creating views instead of working di-
rectly on the volumetric reconstruction is that the resulting repre-
sentation can be compared with other scenarios or datasets where
3D representations are not available. Besides, representing a vol-
ume with a reduced set of views presents a potential reduction of
the dimensionality of the feature space. Finally, note that a partic-
ular case of a set of virtual views is the one in which all the virtual
views have the same parameters as the original camera set available
in the multi-camera environment. Hence, one can see this technique
as a general way of dealing with motion analysis in scenarios with
multiple individuals.

In the following, we describe an example of application aiming
at motion representation and recognition of several actions that may
be useful in assitive environments.

3.1 Feature Extraction

To validate the potential of the proposed representation for human
motion analysis and recognition, we choose to use view-specific
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Figure 4: Example of Silhouettes from Virtual Views automatically
extracted in a scenario with two individuals. First row: Original
images from two cameras, showing a moderate occlusion in the first
one. Second row: View-invariant silhouettes in the coronal (frontal)
and sagittal (left) planes for the first individual (leftmost subject -
wearing a red sweater- in the second original view). Third row:
View-invariant silhouettes in the coronal (frontal) and sagittal (left)

planes for the second individual (rightmost subject -wearing a dark
shirt- in the second original view).

motion templates: Motion Energy Images (MEIls) and Motion His-
tory Images (MHIs) [1]. MEIs are defined as binary cumulative
images that represent regions of the image where motion has been
detected. MHIs are scalar-valued representations of motion where
more recently moving pixels are brighter.

To build them, we first reconstruct the scene using SfS. Next,
we track the individuals with SS and we estimate their orientation.
With the obtained position r; and orientation h; we compute the
virtual camera parameters. Since we aim at motion representation
and analysis, it is desirable to achieve scale invariancy with respect
the height of the individuals. Such a requirement is fulfilled by
setting sufficiently high focal length value and a sufficiently large
distance d value in equation (7). We choose d =20 m and we set the
first and second diagonal values of K to 2000 for virtual images
of 240x240.

Using view-invariant silhouettes, we compute the motion in
each virtual view by temporal differencing and we gather all the
moving pixels in temporal windows of length 7 to construct the
MHI (see Fig. 5). MEIs are obtained by binarization of MHIs.
Finally, like in [1], we compute the Hu moments for each template
and each virtual view.

Clearly, the main advantage of using virtual views is the reduc-
tion of training effort. In [1], many viewpoints are recorded for
each motion. In contrast, we collect images once with the original
camera set and then we define virtual views in convenient direc-
tions. In addition, the use of virtual views makes these temporal
templates easily appliable to different multi-camera scenarios. The
main drawback is that our proposal introduces several errors in the
silhouettes because of the projection of visual hulls.

&
&
walk 0.82 0.07 0.00 0.00 0.05 0.01 0.04 0.02
raise hand | 0.09 0.60 0.05 . R .
crouch 0.00 0.01 0.88 0.00 0.00 0.04 0.07 0.01
wave hand | 0.15 0.19 0.00 0.60 0.03 0.03 0.00 0.00
bounce 0.01 0.04 0.00 0.00 091 0.00 0.00 0.04
clap 0.05 0.07 0.02 0.01 002 0.79 0.02 0.03
kick 0.10 0.00 0.02 0.00 0.01 0.01 0.84 0.01
punch 0.16 0.09 0.01 0.00 0.11 0.01 0.09 0.54

Table 1: Confusion Matrix

3.2 Matching

Our approach consists in creating a feature vector with the Hu mo-
ments computed from MHI and MHE in every view. Consequently,
the obtained vectors are in a feature space of 42 dimensions. Some
exemplars are used to train a Support Vector Machine (SVM). Since
we need to detect a few actions, the dimensionality of the feature
vectors will be much larger than the class space, hence linear ker-
nels will be a suitable kernel for classification of these templates.

4. EXPERIMENTAL RESULTS

Experiments were conducted on several sequences in a room with
5 calibrated cameras. In this scenario, four individuals perform 8
actions: walk, raise hand, crouch, wave hand, wave hand vertically
(like bouncing a ball), clap, kick and punch. One or two individ-
uals are allowed to enter the room at the same time. Each subject
walks across the room in arbitrary directions and performs actions
at arbitrary time instants. Each action can be performed an undeter-
mined number of times within a sequence. Actions involving a sin-
gle hand or leg can be performed with right or left hand/leg. These
sequences, containing more than 7000 frames, have been manually
annotated with the actions and subjects that perform the action.

We estimate the position and orientation of each individual to
compute three orthogonal virtual views according to equations (4),
(5) and (6) and we project the individuals’ associated volume onto
them. The resulting silhouettes are used to create the motion tem-
plates every N frames in both training and testing stages. Provided
that annotations are available, we discard those templates that are
created on parts of the sequence without a specific action label. We
assume that a fixed temporal window will be sufficient to represent
the actions of interest. This is a strong assumption for motion tem-
plates, but we are more interested in showing the potential of the
virtual view-based decriptors rather than testing a sophisticated ac-
tion recognition approach. In addition, we expect to capture part
of the temporal variability by gathering different repetitions of each
action rather than adapting temporal windows.

The available sequences are conveniently split into training and
testing. Approximately 2/3 of the sequences are devoted to training
while the rest are left for classification. We perform this procedure
10 times for different permutations to obtain suitable sets to clas-
sify actions using the proposed virtual view-based descriptors. The
averaged classification results are shown in table 1.

Our results show that even with a simplistic approach, the pro-
posed representation has reasonable potential for human motion
analysis and action recognition in multi-camera scenarios. It is
worth remarking that virtual view-based motion descriptors are able
to cope with the presence of more than one individual moving freely
across the considered scenario.

Individual recognition per class reveals the reliability of motion
templates in several virtual views for actions with noticeable motion
energy (walk, crouch, bounce and kick) in contrast to those where
motion is barely captured due to self occlusions or short time ellapse
for the performed action (punch). The high confusion with walk for
some a priori disimilar actions, such as wave hand or punch, is ex-
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Figure 5: Examples of motion templates on virtual views. First row: Original images from one of the cameras. Second Row: MHI in a view
parallel to the coronal Plane. Third Row: MHI in a view parallel to the sagittal Plane. Fourth Row: MHI in a view parallel to the transverse
Plane.

plained by several reasons. First, because of the coarse action seg-
mentation approach presented that does not select convenient time
instants to perform classification. Second, because individuals per-
form actions as they walk and some “walking motion residuals”
appear in the motion templates. Finally, we cannot obviate the ef-
fect of some errors introduced by the reprojection of the visual hull
and by the orientation estimation. In spite of that, the percentage of
correctly classified motion templates is 74%.

5. CONCLUSIONS AND FUTURE WORK

This paper presented a view-invariant human representation for
multi-camera scenarios based on virtual views. Our main contri-
butions are the statement of necessary and sufficient conditions for
view-invariance and scale invariance with respect some measure
and a method for creating these virtual views in a real scenario. The
proposed approach has been used to represent human appearance
and motion with virtual silhouettes. Experiments on action recog-
nition including sequences with two subjects at the same time have
been conducted, showing the potential of the proposed representa-
tion.

Future work involves improving the robustness of the represen-
tation by using more accurate 3D reconstructions, trackers and ori-
entation estimation methods as well as investigating on more so-
phisticated techniques to analyze and recognize human motion by
means of virtual-view based descriptors.

REFERENCES

[1] A. Bobick and J. Davis, “The Representation and Recognition
of Action Using Temporal Templates”, in /EEE Trans. on Pat-
tern Analysis and Machine Intelligence, vol. 23(3), pp. 11-25,
2001.

[2] C. Canton-Ferrer, J.R. Casas and M. Pardas, “Human Model
and Motion Based 3D Action Recognition in Multiple View
Scenarios”, in Proc. European Signal Processing Conf., 2006.

[3] C. Canton-Ferrer, R. Sblendido, J.R. Casas and M. Pardas,
“Particle Filtering and Sparse Sampling for Multi-Person 3D
Tracking”, in Proc. IEEE Int. Conf. on Image Processing, pp.1-
4,2008.

[4] G.K.M. Cheung, T. Kanade, J.-Y. Bouguet and M. Holler, “A
real time system for robust 3D voxel reconstruction of hu-
man motions”, in IEEE Conf. on Computer Vision and Pattern
Recognition, vol. 2, pp. 714-720, 2000.

[5] R. I. Hartley and A. Zisserman, Multiple View Geome-
try in Computer Vision. Cambridge University Press, ISBN:
0521623049, 2000.

[6] W. Matusik, C. Buehler and L. McMillan, “Polyhedral visual
hulls for real-time rendering”, in Eurographics Workshop on
Rendering, pp. 115 126, 2001.

[7] D. Weinland, E. Boyer, and R. Ronfard, “Action recognition
from arbitrary views using 3d exemplars”, in IEEE Int. Conf.
on Computer Vision, pp. 1-7, 2007.

[8] L. Xu, J. Landabaso and M. Pardas, “Shadow Removal with
Blob-Based Morphological Reconstruction for Error Correc-
tion”, in Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal
Processing, vol. 2, pp. 792-732, 2005.



