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Edif. D5, Jordi Girona 1-3, 08034 Barcelona, Spain

Correspondence should be addressed to Cristian Canton-Ferrer, cristian.canton@upc.edu

Received 24 March 2010; Accepted 6 November 2010

Academic Editor: Jar Ferr Yang

Copyright © 2010 Cristian Canton-Ferrer et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

This paper presents a low-cost real-time alternative to available commercial human motion capture systems. First, a set of
distinguishable markers are placed on several human body landmarks, and the scene is captured by a number of calibrated and
synchronized cameras. In order to establish a physical relation among markers, a human body model is defined. Markers are
detected on all camera views and delivered as the input of an annealed particle filter scheme where every particle encodes an
instance of the pose of the body model to be estimated. Likelihood between particles and input data is performed through the
robust generalized symmetric epipolar distance and kinematic constrains are enforced in the propagation step towards avoiding
impossible poses. Tests over the HumanEva annotated data set yield quantitative results showing the effectiveness of the proposed
algorithm. Results over sequences involving fast and complex motions are also presented.

1. Introduction

Accurate retrieval of the configuration of an articulated
structure from the information provided by multiple cam-
eras is a field that found numerous applications in the
recent years. The grown of computer graphics technology
together with human motion capture (HMC) systems have
been extensively used by the cinematographic and video
games industry to generate virtual avatars [1]. Medicine also
benefited from these advances in the field of orthopedics,
locomotive pathologies assessment, or sports performance
improvement [2]. In this field, despite markerless HMC
systems have attained significant performance ratios in some
scenarios [3], only HMC systems aided by markers placed on
some body landmarks can produce high-accuracy results.

Depending on the type of employed markers, HMC sys-
tems are classified in two groups: nonoptical (inertial, mag-
netic, and mechanic) or optical systems (active and passive).
Optical systems based on photogrammetric methods are
more used than the nonoptical ones, usually requiring special
suits embedding rigid skeletal-like structures [4], magnetic
[5] or accelerometric devices [6] or multisensor fusion
algorithms [7]. Instead, image-based or optical systems allow
a relative freedom of movement and are less intrusive.

A common issue of all optical and nonoptical systems is the
fact that they are usually expensive and require a dedicated
hardware. The most usual involve IR retro-reflective markers
that reflect back light, that is, generated near the cameras
lens [8]. Other optical systems triangulate positions by using
active markers that emits a pulse modulated signal. This
allows distinguishing among markers and to automatically
label them [9].

This paper focuses on HMC systems with passive markers
in a multicamera scenario. These systems first require an
accurate reconstruction of the markers’ 3D position from
its 2D projections which is not a trivial problem. Matches
need to be established between the detected markers in the
different views, defining the multiple view correspondences
through homographies or algebraic methods [10]. This pro-
cess is prone to errors due to occlusions, detection noise, and
the proximity between markers. A temporal tracking of the
markers also needs to be performed, to identify the markers
in each sequence frame, thus yielding a 3D trajectory for each
marker. Although professional systems exist for this purpose,
errors occur when crucial markers become occluded or when
markers’ trajectories are confused. Finally, most applications
require the transformation of the markers localization and
trajectories to the motion parameters of a kinematic skeleton
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model. Commercial tools that perform this transformation
are generally semiautomatic, thus becoming a labor-intensive
task.

Once the 3D marker positions are obtained, it is required
to fit a selected human body model (HBM) to these data
to obtain kinematically meaningful parameters to perform
either an analysis (i.e., for gesture recognition) or a synthesis
(i.e., for avatar animation). However, in most of the systems,
the markers’ 3D position estimation and the fitting steps are
decoupled. One of the first attempts to use an anatomical
human model to increase the robustness of a HMC system
is presented in [11] were the algorithm computes a skeleton-
and-marker model using a standardized set of motions
and uses it to resolve the ambiguities during the 3D
reconstruction process. Another approach using a HBM
and data clustering is presented in [4]. Detection of 2D
markers in separate images and its analysis using calibration
information have been presented in [12] enforcing an
HBM afterwards. A similar technique using a Kalman filter
involving the HBM in the data association step was presented
in [2].

In this paper, a low-cost real-time multicamera algorithm
for marker-based human motion capture is presented.
The proposed algorithm can work with any marker type
detectable onto a set of 2D planes under perspective
projection and it is robust to markers’ occlusion and noisy
detections. Since variables involved with the employed
analysis HBM do not hold a linear relationship and the
involved statistical distributions are non-Gaussian, we opted
for a Monte Carlo approach to estimate the pose of the HBM
at a given time instant. In our case, marker detection and
HBM pose estimation are performed in the same analysis
loop by means of an annealed particle filter [13]. Epipolar
geometry is exploited in the particle likelihood evaluation
by means of the symmetric epipolar distance [14] being
robust to noisy marker detections and occlusions. Moreover,
kinematic restrictions are applied in the particle propagation
step towards avoiding impossible poses. Finally, effectiveness
of the proposed algorithm is assessed by means of objective
metrics defined in the framework of the HumanEva data set
[3]. The presented algorithm is intended to work with any
multicamera setup and regardless of the complexity of the
selected human body model.

2. Monte Carlo-Based Human Motion Capture

2.1. Problem Formulation. The evolution of a physical artic-
ulated structure can be better captured with model-based
tracking techniques [15]. In this process, the pose of an
articulated HBM is sequentially estimated along time using
video data from a number of cameras. Let y be the state
vector to be estimated formed by the defining parameters of
an articulated HBM, angles at every joint, and Y ⊂ RD the
state space describing all possible valid poses an HBM may
adopt, where y ∈ Y.

From a Bayesian perspective, the articulated motion
estimation and tracking problem is to recursively estimate a
certain degree of belief in the state vector yt at time t, given

the data z1 : t up to time t. Thus, it is required to calculate the
posterior pdf p(yt | z1 : t). However, this pdf may be peaky
and far from being convex, and hence cannot be computed
analytically unless linear-Gaussian models are adopted. Even
though Kalman filtering provides the optimal solution under
certain assumptions, it tends to fail when the estimated
probability density presents a multimodal distribution or the
dimension of the state vector is high. Usually, this is the type
of pdf s involved in HMC processes.

2.2. Particle Filtering. Particle Filtering (PF) [16] algorithms
are sequential Monte Carlo methods based on point mass
(or “particle”) representations of probability densities. These
techniques are employed to tackle estimation and tracking
problems where the pdf s of the involved variables do not
hold Gaussianity uncertainty models, linear dynamics and
exhibit multimodal distributions. In this case, PF expresses
the belief about the system at time t by approximating the
posterior probability distribution p(yt | z1 : t), yt ∈ Y.
This distribution is represented by a weighted particle set

{(y
j
t ,π

j
t )}Np

j=1, which can be interpreted as a sum of Np

Dirac functions centered on the y
j
t with their associated real,

nonnegative weights π
j
t :
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In order to ensure convergence, weights must fulfill the

normalization condition
∑

j π
j
t = 1. For this type of

estimation and tracking problems, it is a common approach
to employ a Sampling Importance Resampling-(SIR)-based
strategy to drive particles along time [17]. This assumption
leads to a recursive update of the weights as
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t ∝ π
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SIR PF circumvents the particle degeneracy problem
by resampling with replacement at every time step [16].
That is, to dismiss the particles with lower weights and
proportionally replicate those with higher weights. In this

case, weights are set to π
j
t−1 = Np

−1, for all j, therefore

π
j
t ∝ p

(
zt | y

j
t

)
. (3)

Hence, the weights are proportional to the likelihood
function that will be computed over the incoming data zt.

The best state at time t, Ŷt , is derived based on the
discrete approximation of (1). The most common solution
is the Monte Carlo approximation of the expectation

Ŷt = E
[
p
(

y | zt
)] =

Np∑

j=1

π
j
t y

j
t . (4)

Usually, PF will be able to concentrate particles in the
main mode of the likelihood function thus providing an
estimation of the state space vector. However, multiple
modes of similar size in the likelihood function might
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bias the estimation. In order to cope with such cases, the
estimation is set to be the state vector associated to the
maximum or the mean of all particle weights. Finally, a
propagation model is adopted to add a drift to the state of
the re-sampled particles in order to progressively sample the
state space in the following iterations [16].

Another issue arising when applying PF techniques to
computer vision problems is to derive a valid observation

model p(zt | y
j
t ) relating the input data zt with the particle

state y
j
t . Nevertheless, even if such likelihood model can

be defined, its evaluation may be very computationally

inefficient. Instead of that, a fitness function w(zt, y
j
t ) :

Y → [0, 1] can be constructed according to the likelihood
function, such that it provides a good approximation of

p(zt | y
j
t ) but is also relatively easy to calculate.

2.3. Annealing Strategy. PF is an appropriate technique to
deal with problems where the posterior distribution is multi-
modal. This usually happens when state space dimensionality
is high, like in HMC. To maintain a fair representation of
p(yt | z1 : t), a certain number of particles is required in
order to find its global maxima instead of a local one. It has
been proved in [18] that the amount of particles required
by a standard PF algorithm to achieve a successful tracking
follows an exponential law with the number of dimensions.
Articulated motion tracking typically employs state spaces
with dimension D > 25, thus standard PF turns out to be
computationally unfeasible.

There exist several possible strategies to reduce the
complexity of the problem based on refinements and vari-
ations of the seminal PF idea. Partitioned and hierarchical
sampling [18, 19] are presented as highly efficient solutions
to this problem. In the instance when there exists a tractable
substructure between some variables of the state model,
specific states can be marginalized out of the posterior,
leading to the family of Rao-Blackwellized PF algorithms
[20]. However, these techniques impose a linear hierarchy
of sampling which may not be related to the true body
structure assuming certain statistical independence among
state variables. Finally, annealed PF [13] is one of the
most general and robust approaches to estimation problems
involving high-dimensional and multimodal state spaces. In
this work, this technique will be extended to our marker-
based scenario.

Likelihood functions w(zt, y) involved in HMC problems
may contain several local maxima. Therefore, if using a
single weighting function, a PF would require a large number
of particles to properly sample the state space. By using
annealing combined with PF, a series of weighting functions
{wm(zt, y)}Ln=1 are constructed where wm+1(zt, y) slightly
differs from wn(zt, y) and represents a smoothed version of
it. In our case, wL(zt, y) is designed to be a coarse smooth
version of w1(zt, y) and, typically, wm(zt, y) functions are
constructed by using

wn
(

zt, y
) = w

(
zt, y

)βn , (5)

where βL < · · · < β1 = 1 are the annealing scheduling
parameters.

When a new measurement zt is available an annealing
iteration is performed. Every annealing run consists of
L steps or annealing layers where, in each of them, the
appropriate weighting function is used and a set of pairs

is constructed {(y
j
n,t,π

j
n,t)}Np

j=1. Starting with an initialized

particle set {(y
j
L,t,π

j
L,t = Np

−1)}Np

j=1, the annealing process for
every layer n can be summarized as the following.

(1) Calculate the weights:
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j
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)βn
, (6)

enforcing the normalization condition
∑

j π
j
n,t = 1.

The estimation of parameter βn is based on the
particle survival technique described in [13]. Once
the weighted set is constructed, it will be used to draw
the particles of the next layer.

(2) Resampling: draw Np particles with replacement

from the set {(y
j
n,t,π

j
n,t)}Np

j=1 with distribution p(y =
y
j
n,t) = π

j
n,t.

(3) Construct the particle set corresponding to layer n−1
as

y
j
n−1,t = y

j
n,t + N �(0,Σn),

π
j
n−1,t = Np

−1,
(7)

where N �(µ,Σn) stands for a truncated multivariate
Gaussian distribution with mean µ and covari-
ance matrix Σn that will be further described in
Section 3.5. This process is repeated until reaching
n = 1.

Finally the estimated state Ŷt is computed as

Ŷt =
Np∑

j=1

π
j
1,ty

j
1,t . (8)

The unweighted particle set for the next observation is
defined as

y
j
L,t+1 = y

j
1,t + N �(0,Σ0), (9)

where the covariance matrix Σ0 is set proportional to the
maximum variation of the defining model parameters and
Σn = αL−mΣ0. Setting α = 0.6 provided satisfactory results. A
visual example of the annealed PF is depicted in Figure 1.

3. Filter Implementation

When implementing an annealed PF, several issues must
be addressed: initialization, likelihood evaluation, particle
propagation, and occlusion management. In the following
section, we discuss the implementation of these two factors
when employing a set of marker detections in multiple
cameras as the input and an HBM as the tool to drive the
physical relations among the variables of the state space (see
Figure 2(a)).
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(a) Input (b) Annealing PF (c) Result

Figure 1: Annealed PF operation example. (a) The output of the employed marker detector where color boxes stand for correct (green), false
(red), and missed (blue) detections. (b) The progressive fitting of particles driven by the annealing process and, (c) The final pose estimation
Ŷt .

3.1. Initialization. In the current scenario, it is supposed
that the subject under study is tracked since the moment
he/she enters the scene. A simple person tracking system
is employed [21] to obtain a coarse estimation of person’s
position and velocity. Assuming that backward motions are
unlikely, the velocity vector allows an initial estimation of the
torso orientation. Finally, for the rest of limbs, a neutral and
natural walking position is defined for the initialization of
the HMC system.

In the case of a global miss of the tracked subject,
the variance of the state space variables associated to every
particle tend to be high in comparison of the variance
obtained during a correct tracking operation. Therefore, the
analysis of this variance allows detecting when the HMC
system is out of track. In such case, the coarse tracking system
is employed to start again the initialization loop described
beforehand.

Although a beforehand selected HBM is employed to
track any person, the size of the limbs must be adequate
to the particular subject under study. For the majority of
people, there is a strong quasilinear correlation between
the height of a person and the length of the limbs [22]
thus allowing a proper scaling of these magnitudes after
automatically measuring the height directly from the input
images as shown, for instance, in [14].

3.2. Measurement Generation. The input data zt to the
proposed tracking system will be the detection of the 2D
projections of the set of distinguishable markers attached
to the body of the performer onto the NC available images
in contrast with markerless HMC systems relying on image
features such as edges or silhouettes [13]. Let Dn =
{d1, d2, . . . , dQn} be the set of Qn locations detected in the
image captured in the nth view, In, 1 ≤ n ≤ NC . In order
to generate Dn, a generic marker detection algorithm Γ :
In → Dn is employed whose performance is assessed by
the detection rate (DR), the false positive rate (FP), and the
variance estimation error (σ2

Γ ). This formulation of Γ will
allow performance comparisons of the tracking algorithm

when using different marker detection algorithms and the
assessment of occlusions.

Markers are usually placed at the joints, the end of the
limbs, the top of the head and the chest of the subject.
The proposed method is general enough to be applied to
any type of markers detectable onto a set of 2D planes
under perspective projection. An example of the detections
obtained by our color-based marker detection is shown in
Figure 2(b).

3.3. Likelihood Evaluation. In order to evaluate the likelihood
between the body pose represented by a given particle state

y
j
t ∈ Y with reference to the input data zt = {Dn}NC

n=1,

a fitness function w(zt, y
j
t ) must be defined. The M 3D

positions of the HBM landmarks corresponding to the pose

described by the state vector y
j
t are computed through

forward kinematics [12]. Let us denote these coordinates as
the set X = {x1, x2, . . . , xM}, xm ∈ R3. The fitness function
relating the 3D locations set X with the 2D observations
{Dn}NC

n=1 should measure how well these 2D points fit as
projections of the set X . A similar problem was tackled by the
authors in [14] in a Bayesian framework and the underlying
idea is applied in this context.

For every element xm ∈ X , its projection onto every
camera is computed as

p̃m,n = Pnx̃m, 1 ≤ n ≤ NC , (10)

where Pn ∈ M4×3 is the projection matrix associated to the
nth camera [10] and tilde denotes homogeneous coordinates.
Then, the set Tm = {t1, t2, . . . , tNC} containing the closest
measurement in every camera view for every HBM landmark
xm is constructed as follows:

tn = min
dq∈Dn

∥
∥
∥pm,n − dq

∥
∥
∥, ∀n. (11)

However, not all the 3D points xm may have a projection
onto every view due to occlusions or a miss-detection of the
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Figure 2: Human body model and measurement examples. In (a), the HBM employed in this paper is parameterized as follows: 2 DOF in
the neck, 3 DOF in the shoulders, 1 DOF in the elbows, 3 DOF in the hips, 3 in the lower torso and 1 DOF in the knee. Red dots mark the
HBM landmarks that can be computed by applying forward kinematics. In (b), the output of the employed color based marker location
detection algorithm. Colors describe the correct detections (green), the miss detections (blue) and the false positive detections (red). All this
detections will conform the measurement set Dn.

marker detection algorithm. In order to detect such cases, a
thresholding is applied to the elements tn dismissing those
measurements above a threshold ρ. In this case, tn = ∅
using an empirically determined value of ρ = 10 pixels.
At this point, it is required measure how likely are the set
of 2D measurements Tm to be projections of the 3D HBM
landmark xm. This can be done by means of the generalized
symmetric epipolar distance dSE (·) [14].

Let l(xi, j) be the epipolar line generated by the point x
in a given view i onto another view j. Symmetric epipolar
distance between two points dSE (xi, x j), in the two views i, j,
is defined as

dSE

(
xi, x j

)
�
√
d2
(
l
(

xi, j
)
, x j
)

+ d2(l(x j , i), xi), (12)

where d(l(xi, j), x j) is defined as the Euclidean distance
between the epipolar line l(xi, j) and the point x j as depicted
in Figure 3. The extension of the symmetric epipolar distance
for k ≥ 2 points (in k different views) dSE (x1, . . . , xk) can be
written in terms of the distance defined in (12) as [14]

dSE

(
x1, . . . , xk

)
=
√√
√
√√

k−1∑

i=1

k∑

j=i+1

d2
SE (xi, x j). (13)

This distance produces low values when the 2D points are
coherent, that is, when they are projections of the same 3D
location. The score sm associated to Tm, and therefore to xm,
is defined as

sm
(

zt, ym
) ≡ sm(zt,Tm) ∝ dSE

(
t1, t2, . . . , tNC

)
, (14)

View from cam 0 View from cam 1

l(x 1, 0)

d(l(x1, 0), x0) d(l(x0, 1), x1)

x0 l(x0, 1)

x1

Figure 3: Symmetric epipolar distance between two points
dSE (x0, x1).

and normalized such that sm(zt,Tm) ≤ 1. In the case
where the nonempty elements of Tm is below 2, the distance
dSE (Tm) cannot be computed. Under these circumstances,
we set sm(zt,Tm) = 1.

Assuming that the involved errors follow a Gaussian
distribution [23], an accurate way to define the weighting
function w(zt, y) is

w
(

zt, y
) = exp

⎛

⎝− 1
M

M∑

m=1

sm(zt , xm)

⎞

⎠. (15)

3.4. Occlusion Management. Occlusions are a major problem
in HMC systems and can be separated into two categories:
auto-occlusions and occlusions generated by opaque ele-
ments in the scene. In both cases, when analyzed from a
multi-view perspective, occlusions are reflected in a missing
subset of detected markers into some views. Assuming that
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there are M markers attached to some HBM landmarks, the
set Dn would ideally contain the Mn ≤ M 2D projections of
the markers that are not affected by the occlusions produced
by the body itself onto the nth camera view. Moreover, there
might be some miss-detections of these projection and a
number of false measurements.

Within the current analysis framework, occlusions and
miss-detections can be assumed as an underperformance of
the generic marker detection Γ thus regarded by the miss-
detection rate DR. As previously noted, the amount of false
positives is represented by the false positive rate FP and
the error committed in the marker location estimation is
assumed to have a Gaussian distribution with variance σ2

Γ .
This formation will allow simulating an arbitrary degree of
corruption of the input data, as will be shown in Section 4.

Markers that are visible in, at least, three camera views
can be correctly handled by the likelihood function. In the
case of severe occlusions where there are only two camera
views containing projections of a given marker, the distance
dSE may become inaccurate. In such cases, the position of
the occluded marker is estimated using information from
both the correctly estimated 3D neighboring landmarks and
applying temporal coherence.

3.5. Propagation Model. Kinematic restrictions imposed by
the angular limits at each joint of the HBM may produce
a more robust tracking output. In this field, some methods
employ large volumes of annotated data to accurately model
the angular cross-dependencies among joints [24] or to
learn dynamic models associated to a given action [25].
In our case, these angular constraints will be enforced in
the propagation step of the APF scheme. Typically, the
propagation step consists in adding a random component to
the state vector of a particle as

y
j
t = y

j
t−1 + N (0,Σ) = N

(
y
j
t−1,Σ

)
. (16)

That is, to generate samples from a multivariate Gaussian

distribution centered at y
j
t−1 with covariance matrix Σ.

However, this may lead to poses out of the legal angular
ranges of the HBM. In order to avoid such effect, some works
[26] add a term into the likelihood function that penalizes
particles that do not fulfill the angular constraints. The
following alternative is proposed to take into account angular
constrains and draw samples from a truncated Gaussian
distribution [27], denoted as N � and shown in Figure 4. In
this way, particles are generated always within the allowed
ranges thus avoiding the evaluation of particles that encode
impossible poses and therefore increasing the performance
of the sampling set.

4. Experiments and Results

4.1. Synthetic Data on HumanEva. In order to test the
proposed algorithm, HumanEva data set [3] has been
selected since it provides synchronized and calibrated data
from both several cameras and a professional motion capture
(MoCap) system to produce ground truth data. This data set
contains a set of 5 actions performed by 3 different subjects

captured by 4 fully calibrated cameras with a resolution of
640× 480 pixels at 30 fps.

HumanEva suggests two metrics, mean, μ, and standard
deviation of the estimation error, σ , towards providing
quantitative and comparable results. In this paper, metrics
proposed in [28] for 3D human pose tracking evaluation
are also employed. Let X = {x1, x2, . . . , xM}, xm ∈ R3,
denote the M landmark positions of the HBM (typically, the
body joints and the end of the limbs) corresponding to the
pose described by the state variable y ∈ Y computed using
forward kinematics [12] at a given time t. Assuming that
landmark positions x̂m associated to particle y j are available,
we can define a matched marker estimation x̂m with respect to
the ground truth position xm as the one fulfilling ε = ‖xm −
x̂m‖ < δ. This stands for those estimations that fall δ-close
to the ground truth position. Then, the Multiple Marker
Tracking Accuracy (MMTA) is defined as the percentage of
markers xm ∈ X fulfilling the ε < δ condition, and the
Multiple Marker Tracking Precision (MMTP) as the average
of the metric error between x̂m and xm, of all pairs fulfilling
ε < δ. Finally, these scores are averaged for all frames in
the sequence. Threshold δ, being an upper-bound of the
maximum allowed error, is set to δ = 100 mm in our
experiments.

As it has been presented in Section 3.2, the input
measurements zt of the proposed algorithm are a set of
2D detections, Dn, measured over NC cameras for every
time instant t. A synthetic data generation strategy has been
devised where the 2D projection of the markers onto all
camera views are computed from the 3D ground truth data,
noted as Xt. This process is exemplified in Figure 5 and
defined as follows.

(1) Inverse kinematics are applied to Xt to estimate the
pose of a HBM and body parts are fleshed out with
super ellipsoids.

(2) Every 3D location in Xt is projected onto every
camera in order to generate the sets Dn, 1 ≤ n ≤ NC .
The previously estimated fleshed HBM checks the
visibility of markers onto a given camera view by
modeling the possible auto-occlusions among body
parts. At this point, the 2D locations contained in
Dn are the positions obtained by an ideal marker
detection algorithm.

(3) The effect of the marker detection algorithm Γ is
simulated by generating a number of miss detections,
false measurements and, finally, adding a Gaussian
noise to all measurements, according to the statistics
reflected by DR, FP, and σ2

Γ .

In order to test the performance of the proposed tracking
algorithm, two factors must be taken into account: the
performance of the marker detection algorithm Γ (deter-
mined by the triplet {DR, FP, σ2

Γ}) and the algorithm design
parameters, that is, the number of layers L and the number
of particles per layer Np. A simulation has been conducted
testing a large number of combinations between parameters
of Γ and the proposed APF algorithm. The results of this
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θ+

ykt−1

θ−

θ

(a) (b)

Figure 4: Angular constraints enforcement by propagating particles within the allowed angular ranges [θ−, θ+]. In (a), samples are

propagated following a truncated Gaussian distribution N � centered at y
j
t−1 with covariance matrix Σ = σ bounded between θ− and θ+

(green zone). (b) An example of particle propagation in the knee angle displaying how propagated particles never fall out the legal ranges
(θ < 0).

simulation are depicted in Figure 6 where the MMTA score
is displayed as the more informative metric [28].

When analyzing the impact of missing projections of
markers, that is, occlusions, represented by DR and shown in
Figure 6(a), it can be seen that the algorithm is still robust
producing accurate estimations even in the case of a large
miss of data, DR = 0.4. Assuming a fixed and realistic
amount of occlusions, DR = 0.85, we can explore the
influence of the other distorting factors. Analyzing the results
shown in Figure 6(b), it may be seen that the algorithm is
robust against the number of false detections FP since it is
very unlikely that false 2D measurements in different views
keep a 3D coherence. In this case, the spacial redundancy
is efficiently exploited to discard these measurements. On
the other hand, the performance of the algorithm decreases
as the 2D marker position estimation error increases, σ2

Γ .
Another evident fact to be emphasized is the overannealing
effect. The performance of the algorithm is not monoton-
ically increasing with the number of employed annealing
layers. This happens when the particles concentrate too
much around the peaks of the weighting function hence
impoverishing the overall representation of the likelihood
distribution. For this motion tracking problem, we found
that the optimal configuration is L = 3 and Np = 700.

4.2. Real Data. The presented body tracking algorithm has
been applied to capture motion figures from 4 different types
of dances: salsa, belly dancing, and two Turkish folk dances.
The analysis sequences were recorded with 6 fully calibrated
cameras with a resolution of 1132× 980 pixels at 30 fps.

Markers attached to the body of the dance performer
were little yellow balls and a color-based detection algorithm
Γ has been used to generate the sets Dn for every incoming
multi-view frame. The original images are processed in
the YCrCb color space which gives flexibility over intensity
variations in the frames of a video as well as among the
videos captured by the cameras from different views. In order
to learn the chrominance information of the marker color,
markers on the dancer are manually labeled in one frame

Table 1: Result comparisons with state-of-the art methods evalu-
ated over the HumanEva dataset. The presented score corresponds
to the mean of the error estimation μ, as reported by the compared
authors in their respective contributions.

Method Walk Jog Box Average

Hierarchical
Partitioned PF [26]

101.9 — — —

EM + Kinematically
constrained GMM
[29]

— — — 150.9

PF + Dynamic
models [30]

100.4 — — —

ICP + Naı̈ve
classification [31]

53.1 — 45.4 —

Example-based
pose estimation
[32]

45.3 43.8 94.3 —

Example-based
pose estimation +
feature selection
[33]

— — — 37.98

Sparse probabilistic
regression [25]

32.7 31.2 38.5 —

Voxel
reconstruction +
APF [34]

96.5 130.34 145.22 121.18

Proposed method 56.01 62.52 77.89 59.88

for all camera views. It was assumed that the distributions
of Cr and Cb channel intensity values belonging to marker
regions are Gaussian. Thus, the mean can be computed
over each marker region (a pixel neighborhood around the
labeled point). Then, a threshold in the Mahalanobis sense
is applied to all images in order to detect marker locations.
An empirical analysis showed that the detector Γ had the
following performance triplet: DR = 0.98, FP = 4, and
σ2

D = 20 mm.
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(a) (b) (c) (d) (e)

Figure 5: Synthetic data generation process. Since the reflective markers are not distinguishable in the original RGB image (a), the sets
{Dn}NC

n=1 are generated from the 3D locations provided by the MoCap system. First, for a given view n, all 3D markers are projected onto the
corresponding image (b), and those affected by body auto-occlusions are removed (c). Then, the marker detection algorithm Γ is applied:
some markers are missed due to the detection ratio (d), and a number of false measurements are generated (e). Finally, an amount of
Gaussian noise with variance σ2

Γ is added simulating the position estimation error.
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Figure 6: Quantitative results over the HumanEva data set where score MMTA is displayed in pseudocolor. In all plots, y-axis accounts for
the number of layers L and x-axis for the number of particles per layer Np. In (a), assuming an ideal case where FP = 0 and σ2

Γ = 0, impact
of the number of occlusions, regarded by DR in the overall performance. In (b), assuming a fixed occlusion level DR = 0.85, results for the
cases FP = {0, 20, 40, 60, 80, 100} and σ2

Γ = {0, 20, 40, 60, 80, 100}mm.
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(a) Salsa figures

(b) Belly dancing figures

Figure 7: Dance motion tracking results. Two examples of dance tracking: salsa and belly dancing.

In this particular scenario, the algorithm had to cope
with very fast motion associated to some figures. Even
though these harsh conditions, the results were satisfac-
tory and visually accurate as shown in Figure 7. Check
http://www.cristiancanton.org/ for some example videos.

4.3. Results Comparison. A number of algorithms in the
literature have been evaluated using HumanEva-I and
their results have been reported in Table 1. There are
two main trends in pose estimation: methods based on a
tracking formulation of the problem and methods based
on statistical classification. The method presented in this
paper falls into the first category where some comparisons
can be made. Among the reported methods, we find the
expectation-maximization (EM) kinematically constrained
GMM method presented by Cheng and Trivedi [29] as the
continuation of the techniques already presented by Mikič
[35]. Addressing a complex problem such as human motion
capture using EM is perhaps manageable in a benevolent
scenario with well learnt constrains but, as suggested by
Caillete and Howard [36] in the comparison of EM- and
PF- based methods, Monte Carlo-based techniques clearly
outperform those based in minimization algorithms. Other
contributions reported over HumanEva-I are based on the
seminal idea of PF. Husz and Wallance [26] included a
particle propagation step relying on learnt information on
the structure of the executed motion thus facing the already
mentioned problem of lack of adaptivity to unseen motions.
A very detailed dynamic model of the human kinematics is
employed by Brubaker et al. [30]. Motion involving a more
complex pattern such as boxing or gesturing may not cope
well with these two methods.

The other family of human motion capture algorithms
is based on learning and classification instead of tracking.
Basically, these techniques examine the ground truth data
and extract a number of features from them. Afterwards,
when a new test frame is processed, these same features
are extracted, and the best match between them and the
already learnt ones is outputted. Results obtained with
these techniques, specially those of Urtasun et al. [25] and
Poppe [32], outperform the tracking-based ones. How-
ever, these techniques are constrained to track a before-
hand selected action and their applicability to unknown
motion patterns is limited. It is notable the technique
presented by Münderman et al. [31] where a 3D recon-
struction is performed before computing the features to be
learnt.

To the authors knowledge, there is no evaluation of a
marker-based HMC system using the HumanEva dataset.
The obtained results are close to those presented by
classification-based markerless methods and, although the
employed input data is different, it allows qualitatively
evaluating its performance. An advantage of using a marker-
based method is its robustness to faulty inputs, its low
complexity, and the possibility of real-time implementations.

4.4. Real-Time Considerations. Once the image measure-
ments have been obtained, the fitting of an HBM to these
data using the proposed algorithm is achieved in real time in
a 3 GHz computer. Due to the low dimension of the input
data (

∑NC
n=0 Dn), the computation of the involved operations

in both the likelihood and propagation steps require a
low computational cost. Measurements, can be obtained
using elementary image filtering techniques as shown in
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Section 4.2 usually computed directly on the camera (as done
by [8]) or by the digitizing hardware.

5. Conclusion

This paper presents a robust real-time low-cost approach
to marker-based human motion capture using multiple
cameras synchronized and calibrated. Progressive fitting of a
human body model through the annealed particle filtering
algorithm using a multi-view consistency likelihood func-
tion, the symmetric epipolar distance, and a kinematically
constrained particle propagation model allow an accurate
estimation of the body pose. Quantitative evaluation based
on HumanEva dataset assessed the robustness of the algo-
rithm when dealing faulty input data, even in very harsh
conditions. Fast dance motion was also analyzed proving the
adequateness of our technique to deal with a real scenario
data.
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